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1 Introduction



Task

• Exposing meaningful and interpretable neural interactions is 
critical to understanding neural circuits.

• Inferred neural interactions from neural signals primarily reflect 
functional connectivities.

• A classical one-state generalized linear model (GLM) is only able 
to find a static functional connectivity graph.

• But in a long experiment, subject animals may experience 
different stages defined by the experiment, stimuli, or behavioral 
states, and hence functional connectivities can change over time.



Previous works and our contribution

• To model dynamically changing functional connectivities, prior 
work employs state-switching GLM with hidden Markov models 
(i.e., HMM-GLMs).

• However, this lacks biological plausibility, as functional 
interactions are shaped and confined by the underlying 
anatomical connectome.

• Our new one-hot HMM-GLM can model the dynamically 
changing functional connectivity confined by an underlying 
anatomical connectome, and provide stable and interpretable 
state transitions.



2 Method



Classic one-state GLM

• Spike train data 𝑿 ∈ ℕ𝑇×𝑁, 𝑁 neurons, 𝑇 time bins.
• Firing rates of the 𝑛-th neuron at the 𝑡-th time bin
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• Spike count 𝑥𝑡,𝑛 ∼ Poisson 𝑓𝑡,𝑛 .
• 𝜎 is a non-linear function (e.g., Softplus).
• 𝑏𝑛 is the background intensity of the 𝑛-th neuron.
• 𝑤𝑛←𝑛′ is the weight of influence from neuron 𝑛′ to neuron 𝑛.
• 𝝓 ∈ ℝ+

𝐾 is the basis function summarizing history spikes.



Naïve HMM-GLM (HG)
• 𝑆 states, 𝑁 neurons, 𝑇 time bins.
• 𝒙𝑡 ∈ ℕ𝑁
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• 𝜫 ∈ ℝ𝑆×𝑆 is the state transition matrix
• 𝑾𝑠 ∈ ℝ𝑁×𝑁
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𝑆 is the weight matrix
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Gaussian HMM-GLM (GHG)
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• 𝑆 states, 𝑁 neurons, 𝑇 time bins.
• 𝒙𝑡 ∈ ℕ𝑁

𝑡=1
𝑇 is the spike count for the 𝑁

neurons

• 𝑧𝑡 ∈ 1,2, … , 𝑆
𝑡=1

𝑇
 is the state index

• 𝜫 ∈ ℝ𝑆×𝑆 is the state transition matrix
• 𝑨𝑠 ∈ −1,0,1 𝑁×𝑁

𝑠=1
𝑆 is the adjacency 

matrix
• 𝑾0 ∈ ℝ𝑁×𝑁 is the Gaussian prior of 𝑾𝑠, 
𝑤𝑠,𝑛←𝑛′ ∼ 𝒩 𝑤0,𝑛←𝑛′ , 𝜎

2 , i.i.d. for 𝑠 ∈
1,… , 𝑆

• 𝑾𝑠 ∈ ℝ𝑁×𝑁
𝑠=1
𝑆 is the weight matrix



One-hot HMM-GLM (OHG)
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• 𝒙𝑡 ∈ ℕ𝑁
𝑡=1
𝑇 is the spike count for the 𝑁 neurons

• 𝑧𝑡 ∈ 1,2, … , 𝑆
𝑡=1

𝑇
 is the state index

• 𝜫 ∈ ℝ𝑆×𝑆 is the state transition matrix
• 𝑨𝑠 ∈ Δ2 𝑁×𝑁

𝑠=1
𝑆 is the adjacency matrix

• 𝑨0 ∈ Δ2 𝑁×𝑁 is the Gumbel-softmax prior of 𝑨𝑠, 
𝒂𝑠,𝑛←𝑛′ ∼ Gumbel − Softmax 𝒂0,𝑛←𝑛′ , 𝜏 , i.i.d. for 
𝑠 ∈ 1,… , 𝑆

• ෪𝑾 𝑠 ∈ 0,∞ 𝑁×𝑁
𝑠=1

𝑆
is the strength matrix



One-hot HMM-GLM, complete illustration

      

                                    



3 Inference



E-step, forward-backward algorithm

• Define 𝛾𝑧𝑡 𝑡 ≔ 𝑝 𝑧𝑡 𝑿; 𝜃
old , 𝜉𝑧𝑡−1,𝑧𝑡 𝑡 ≔ 𝑝 𝑧𝑡−1, 𝑧𝑡 𝑿; 𝜃

old

• Define 𝛼𝑧𝑡 𝑡 ≔ 𝑝 𝒙1, … , 𝒙𝑡 , 𝑧𝑡

• Define 𝛽𝑧𝑡 𝑡 ≔ 𝑝 𝑧𝑡+1, … , 𝑧𝑇 𝒙1, … , 𝒙𝑡 , 𝑧𝑡

• Then, 𝛼𝑧𝑡 𝑡 and 𝛽𝑧𝑡 𝑡 can be computed iteratively as



M-step

• With the inferred posterior for 𝒛, we can update 𝜃 by maximizing



4 Experiments



Synthetic

• 𝑆 = 5 states, 𝑁 = 20 neurons, 𝑇 = 5000 time bins.

• Transition probability: 𝜋𝑠,𝑠′ = 0.005 + 0.975 ⋅ 𝟏 𝑠 = 𝑠′ .

• 20 spike trains, 10 for training and 10 for test.

• Metrics:
• Test log-likelihood (LL) ↑
• State accuracy  ↑
• Weight error ↓
• Connection accuracy ↑
• Connection prior accuracy ↑



Synthetic

• OHG is the best in terms of all metrics 



Synthetic
• OHG gets clear and accurate connectivities.
• OHG explicitly discriminate a weak connection and a no connection



Prefrontal cortex during a contingency task

• https://crcns.org/data-sets/pfc/pfc-6

• Neural spike trains were collected while a rat learned a behavioral 
contingency task.

• 5 seconds before trial start – 10 seconds after trial start.

• 750 time bins, bin size = 20 ms.

• First 2/3 trials are training, remaining 1/3 trials are test.

• Try different numbers of states 𝑆 ∈ 2,3,4,5 .

https://crcns.org/data-sets/pfc/pfc-6


Prefrontal cortex during a contingency task



Prefrontal cortex during a contingency task



Prefrontal cortex during a contingency task



Prefrontal cortex during a contingency task

• HG: fast switches, limited interpretability

• GHG: 𝑆 = 4 states are assumed, but GHG only infers two effective states

• OHG: 4 stable explainable states
• Red: back to the root

• Green: go to the turning point

• Orange: reach a target

• Incorrect trial:
no reward, blue state

• Correct trial:
reward, red state



Barrel cortex during whisking

• Electrode recordings of the somatosensory (barrel) cortex in mice 
during a shape discrimination task (Rodgers et al., 2021; Rodgers, 
2022; Nogueira et al., 2023).

• 27 sessions from 5 mice.

• Number of neurons 𝑁 ranges from 20 to 44.

• 6 seconds for each trial. Bin size = 3 ms.

• 750 time bins, bin size = 20 ms.

• 10 of 30 trials are randomly selected for test.

• Try different numbers of states 𝑆 ∈ 2,3,4,5 .



Barrel cortex during whisking
• OHG state 2 corresponds contacts
• OHG provides stable states prediction



Barrel cortex during whisking



Summary

• The newly proposed one-hot HMM-GLM decomposes the traditional 
weight matrix in GLMs into a discrete connection matrix with type and 
a positive-valued strength matrix. Such a decomposition is critical 
when applied to state-switching neural interaction discovery.

• The regulated connection matrices 𝑨𝑠 in our OHG with their shared 
prior 𝑨0 should inform us about underlying anatomical connectome 
and thus uncover the “more likely” physical interactions between 
neurons.

• The less restricted strength matrices ෪𝑾 in OHG will provide us with 
sufficient traceability to capture functional variations across multiple 
brain states.



Thanks for listening!
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