

A Graph is Worth <u>1-bit</u> Spikes: When Graph Contrastive Learning Meets Spiking Neural Networks

Jintang Li, Huizhe Zhang, Liang Chen, Zibin Zheng, Sun Yat-sen University Ruofan Wu, Baokun Wang, Changhua Meng, Ant Group Zulun Zhu, Nanyang Technological University

lijt55@mail2.sysu.edu.cn

https://github.com/EdisonLeeeee/SpikeGCL

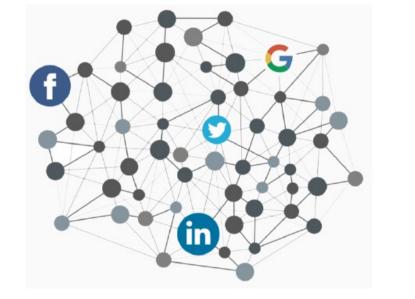
TABLE OF CONTENTS

Background

Graphs & Graph Neural Networks Graph Self-supervised Learning Spiking Neural Networks □ SpikeGCL: Spiking Graph Contrastive Learning Theoretical Insights □ Experiments & Results Conclusion

BACKGROUND Graphs & Graph Neural Networks

Networks are everywhere - Graphs are natural way to model such networks



male has Generative 1941-05-24 bornon Date has Family Name Zimmerman Web web with the Bob Dylan Robert Elston Gunnn Elston Gunnn States Steve Jobs

Social Networks

Knowledge Graph

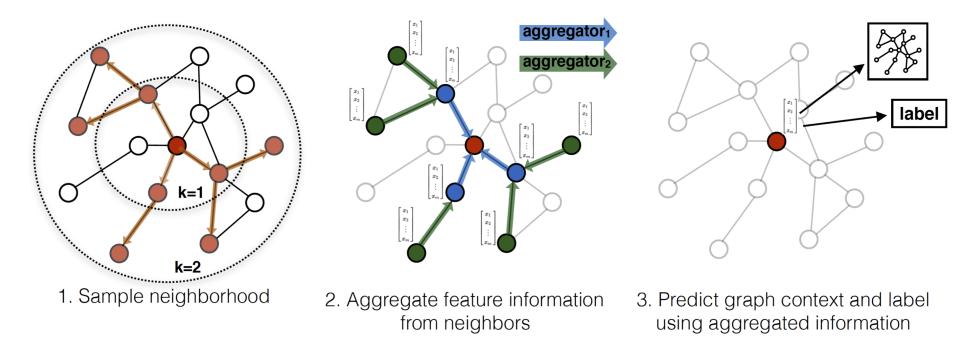
Protein-Protein Interaction Networks

BACKGROUND Graphs & Graph Neural Networks

Graph Neural Networks (GNNs)

□ Message and Aggregation Scheme

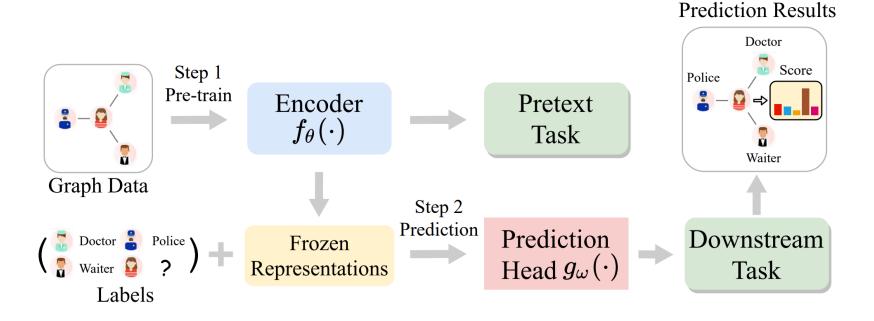
□ Compress a set of vectors into a single vector (i.e., node representation)



Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Advances in neural information processing systems 30 (2017)

Graph Self-supervised Learning

- \Box GNN \rightarrow training with self-defined pretext task \rightarrow encoder f_{θ}
- \Box Encoder $f_{\theta} \rightarrow$ representations \rightarrow generalize to other downstream tasks



Lirong, Wu et al. "Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive." IEEE Trans. on Knowl. and Data Eng. 35, 4 (April 2023), 4216–4235.

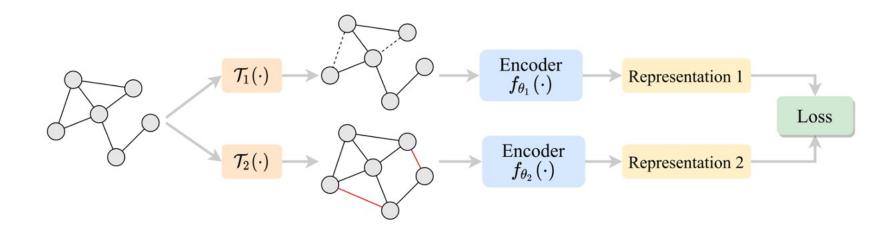
BACKGROUND Graph Self-supervised Learning

Graph Contrastive Learning

□ Augmentation: graph data augmentation for different graph views

□ Contrasting: maximize the agreement of two graph views

□ Augmentation → Encoder f_{θ} → representations → Contrasting

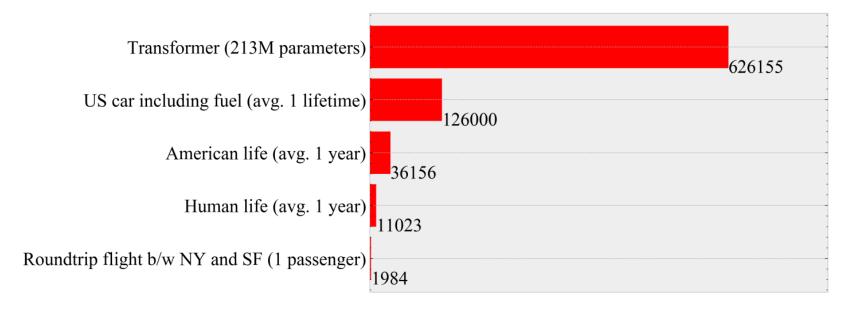


Lirong, Wu et al. "Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive." IEEE Trans. on Knowl. and Data Eng. 35, 4 (April 2023), 4216–4235.

Green AI: How Far are We?

\Box CO2 emissions: A Transformers with 213M parameters \approx 60x Human life

□ Next-generation efficient neural networks -> spiking neural networks (SNN)



Strubell E, Ganesh A, McCallum A. Energy and policy considerations for deep learning in NLP[J]. arXiv preprint arXiv:1906.02243, 2019.

Spiking Neural Networks

□ ANN (Artificial Neural Network) → Information is typically represented as continuous values in

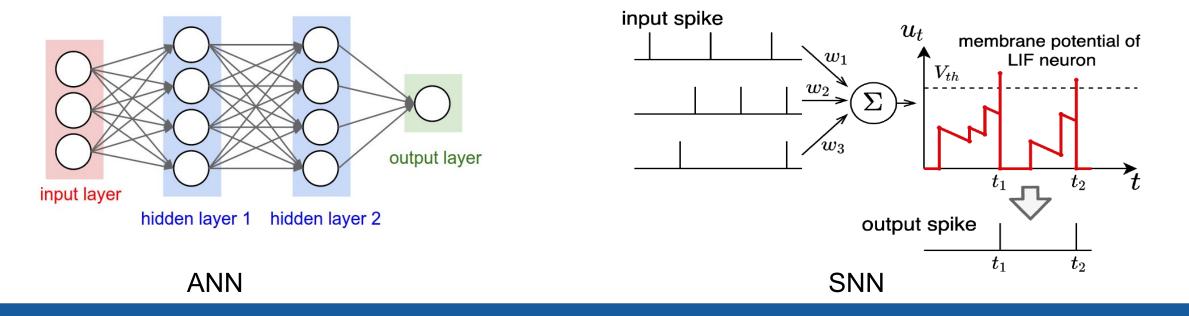
0.4

0, 0, 1, 1, 0

the activations of neurons and the weights of connections

 \Box SNN (Spiking Neural Network) \rightarrow Information is represented as discrete spikes of activity

over time. The timing and frequency of spikes encode information in an SNN

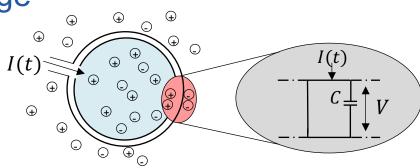


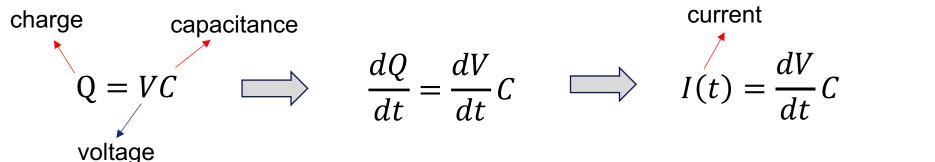
0.4

Spiking Neurons as Capacitor

□ Spiking neurons act as a capacitor that stores charge over time

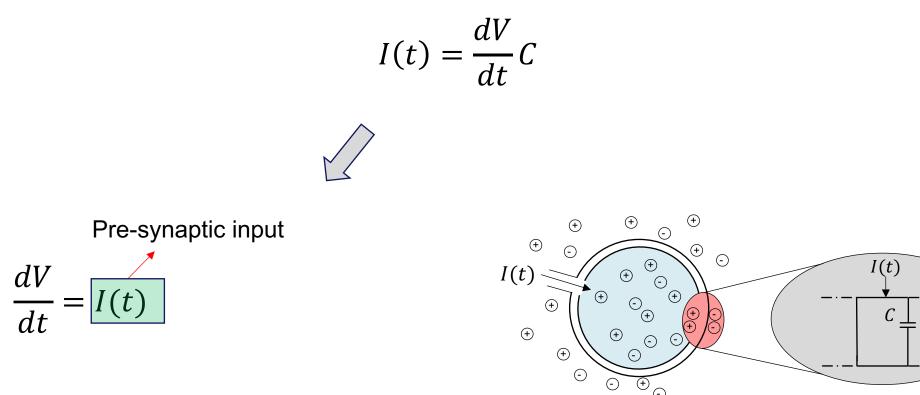
□ It assumes ideally that there was no static power leakage





Spiking Neurons

□ Integrate-and-fire (IF): the most simple and common spiking neuron



Integrate-and-fire (IF) Neuron

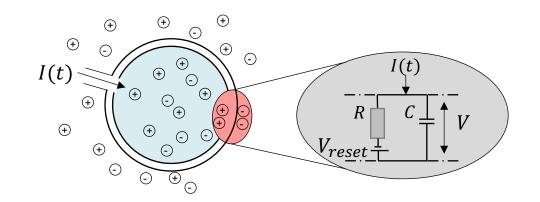
V

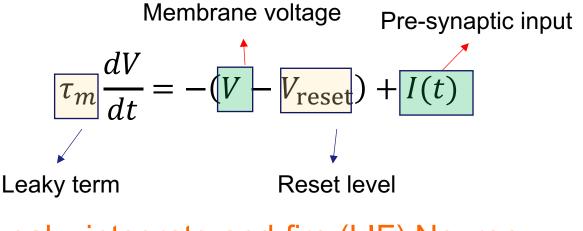
Spiking Neurons

□ Integrate-and-fire (IF): the most simple and common spiking neuron

Leaky Integrate-and-fire (LIF): an additional leaky term for which membrane potential charges and discharges exponentially

□ Parametric Leaky Integrate-and-fire (PLIF): the leaky term is trainable





Leaky integrate-and-fire (LIF) Neuron

How SNNs Work?

- □ Fundamental characteristics: Integrate, Fire, and Reset
- Different spiking neurons have different integrate behaviors
- □ The reset mechanism can also be different

1. Integrate
$$V^{t} = V^{t-1} + I^{t}$$
 IF $V^{t} = V^{t-1} + \frac{1}{\tau_{m}} (I^{t} - (V^{t-1} - V_{reset}))$ LIF or PLIF
2. Fire (output) $S^{t} = \begin{cases} 1, & V^{t} \ge V_{th} \\ 0, & V^{t} < V_{th} \end{cases}$ threshold
3. Reset $V^{t} = \begin{cases} V^{t}, & S^{t} = 0 \\ V_{reset}, & S^{t} = 1 \end{cases}$ Reset to zero $V^{t} = \begin{cases} V^{t}, & S^{t} = 0 \\ V^{t} - V_{th}, & S^{t} = 1 \end{cases}$ Reset by subtraction

How SNNs Work?

□ An simple illustration of the charging behavior in each spiking neuron

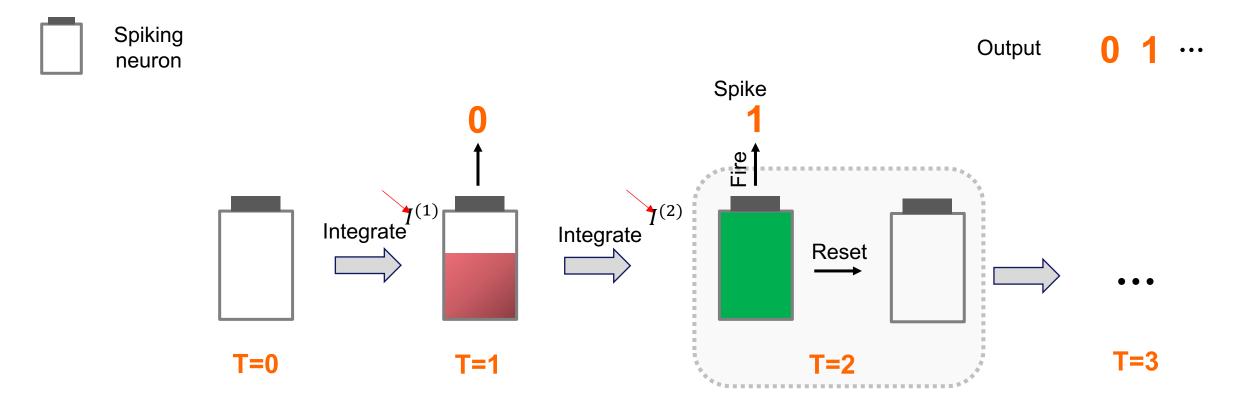


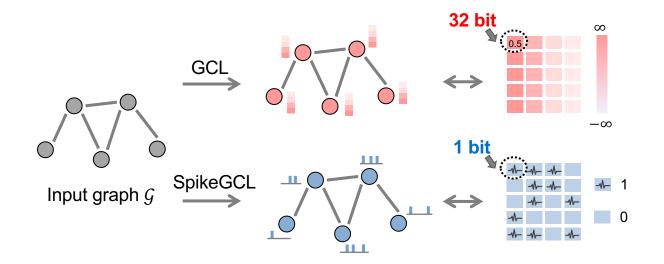
TABLE OF CONTENTS

Background

Graphs & Graph Neural Networks Graph Self-supervised Learning Spiking Neural Networks SpikeGCL: Spiking Graph Contrastive Le Theoretical Insights □ Experiments & Results Conclusion

MOTIVATION

Can we explore the possibilities of SNNs with contrastive learning schemes to learn sparse, binarized yet generalizable representations?



Incorporating spiking neural networks to graph contrastive learning -> SpikeGCL

SNN – GCL = SpikeGCL

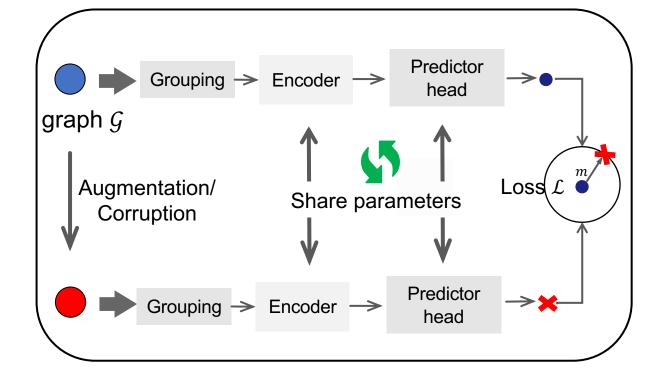
Overall Framework

□ Step1: Augmentation/corruption

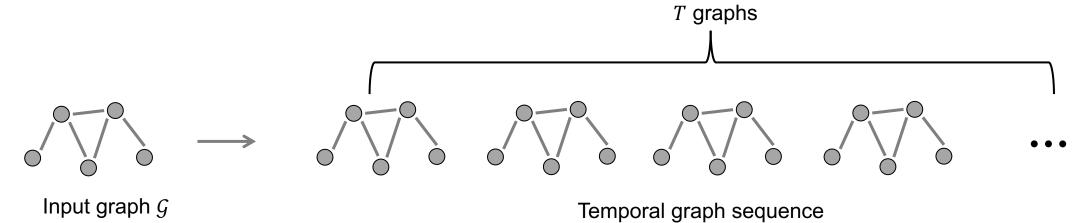
□ Step2: Grouping + Encoding

□ Step3: Decoding

□ Step4: Contrasting

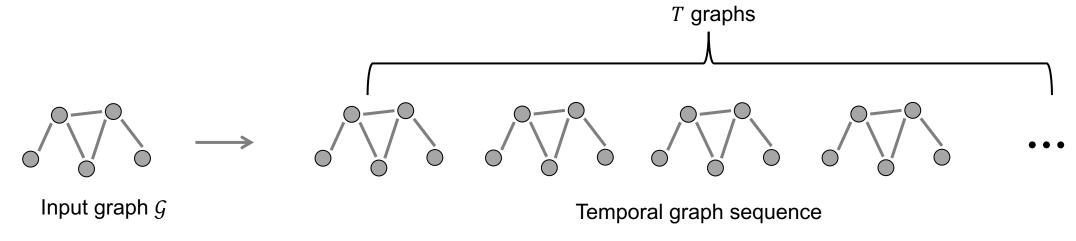


- Why do we need Grouping? 🤤
- □ SNNs are temporal models that require sequential inputs
- □ Challenge: how to formulate such inputs from a non-temporal graph?
- Existing works: repeat input graph multiple times w/ or w/o augmentations (SpikingGCN, GC-SNN, GA-SNN, …)



Why do we need Grouping? 🤪

- □ SNNs are temporal models that require sequential inputs
- □ Challenge: how to formulate such inputs from a non-temporal graph?
- Existing works: repeat input graph multiple times w/ or w/o augmentations (SpikingGCN, GC-SNN, GA-SNN, …)

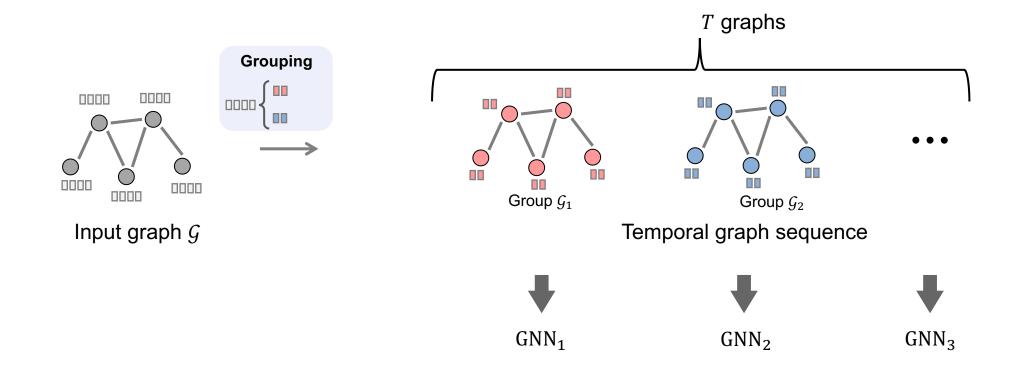


High computational and memory overhead, almost T times that of GNNs

Why do we need Grouping? 🤤

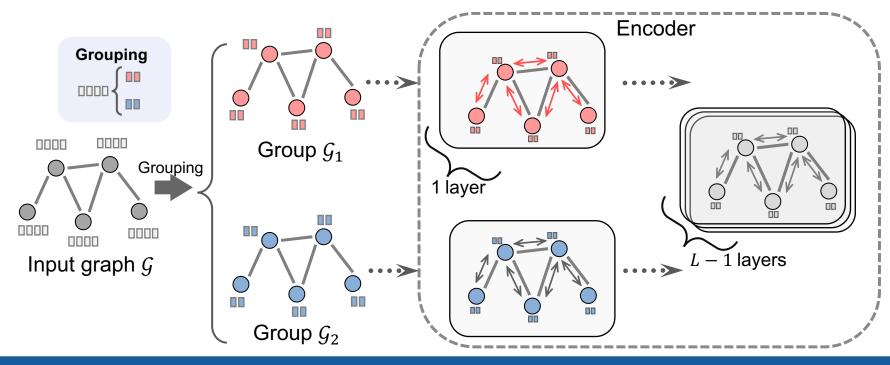
 \Box Partition the node features into *T* groups, rather than repeating the graphs

□ Each group of features is paired with a GNN network



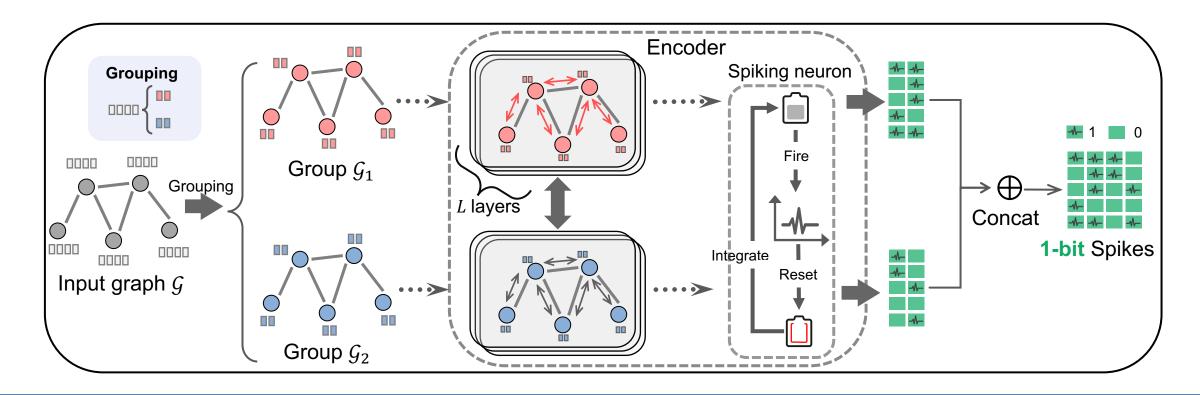
SpikeGCL encoding

- □ Only the first layer is different in response to diverse groups of features
- \Box Parameters of the remaining *L*-1 layers of the peer GNNs are shared together
- □ The overall complexity is almost equivalent to a regular GNN



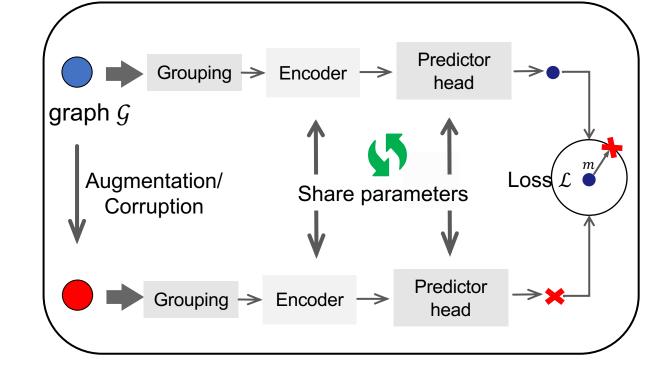
SpikeGCL encoding

- □ A spiking neuron is used to output spikes
- □ Grouping -> Encoding -> Spiking



Overall Framework

- □ Step1: Augmentation/corruption
- □ Step2: Grouping + Encoding
- □ Step3: Decoding
- □ Step4: Contrasting



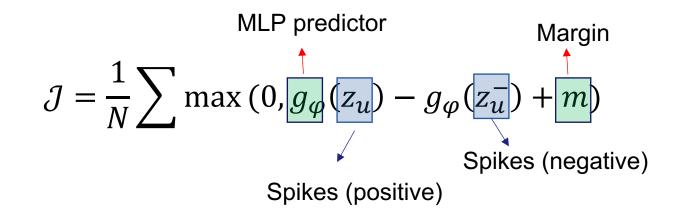
Augmentation

- □ Edge dropping & feature shuffling
- □ Edge dropping: randomly drops a subset of edges from the original graph
- Feature shuffling: gives a new permutation of the node feature matrix along the feature dimension

Decoding + Contrasting

 \Box An MLP g_{φ} is used as the predictor to decode the binary representations to continuous ones

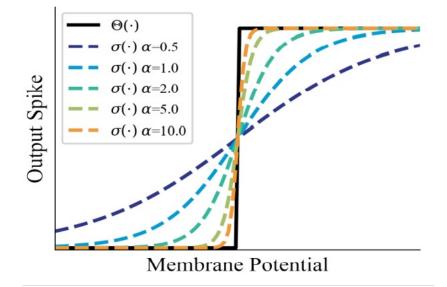
□ Contrastive learning objective: margin ranking loss



Blockwise training

- □ Directly training SNNs using gradient descent is non-trivial
- □ Surrogate gradient learning is a viable solution, but it also has limitations
- □ Surrogate functions -> vanishing gradient
- □ SNNs requires relatively large time steps -> high overheads

$$\Theta(x) = \begin{cases} 1, & x \ge 0\\ 0, & x < 0 \end{cases} \approx \sigma(\alpha x) = 1/(1 + \exp(-\alpha x))$$

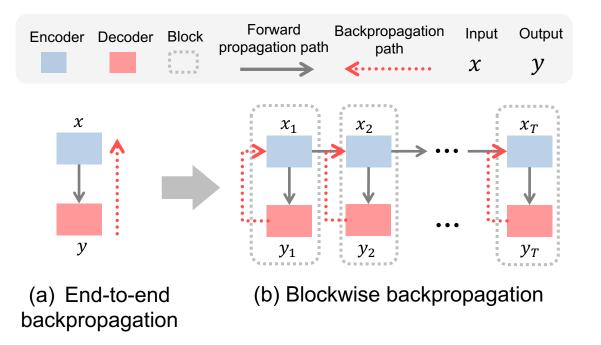


Blockwise training

□ One or more consecutive time steps as a single block, and limit the length of

the backpropagation path to each of these blocks

□ Parameters within each block are optimized locally with a contrastive objective



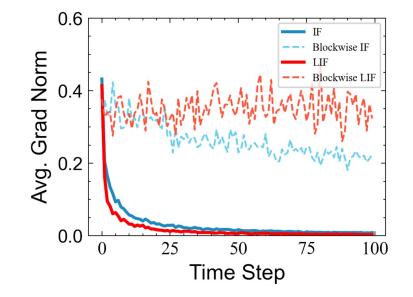


TABLE OF CONTENTS

Background

Graphs & Graph Neural Networks Graph Self-supervised Learning Spiking Neural Networks SpikeGCL: Spiking Graph Contrastive Learning Theoretical Insights **Experiments & Results** Conclusion

SpikeGCL is able to approximate a full-precision GNN with a relatively large time step *T*

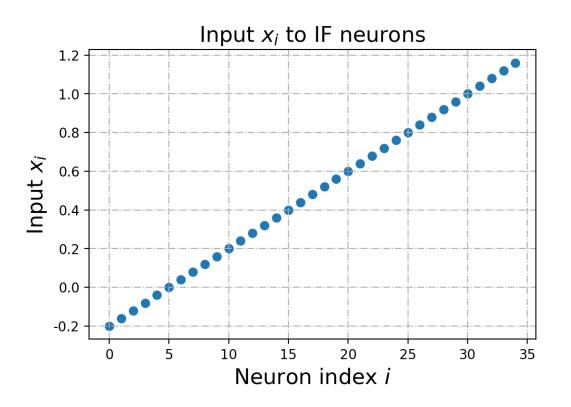
Theorem 1 (Informal). For any full-precision GNN with a hidden dimension of d/T, there exists a corresponding SpikeGCL such that its approximation error, defined as the ℓ_2 distance between the firing rates of the SpikeGCL representation and the GNN representation at any single node, is of the order $\Theta(1/T)$.

Detailed Proof -> Appendix A

A Toy Example: How an IF neuron approximates the ReLU activation

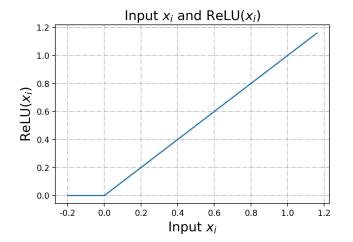
Generate random inputs:

x = torch.arange(-0.2, 1.2, 0.04)



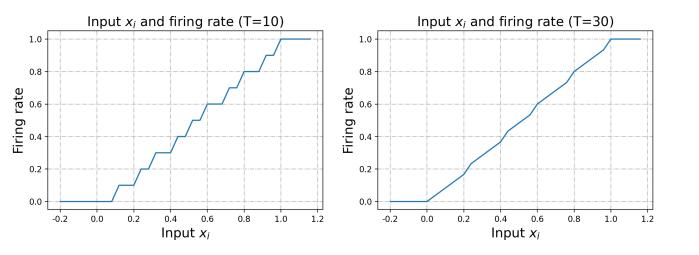
A Toy Example: How an IF neuron approximates the ReLU activation

Output of ReLU: ReLU(x) = max(x, 0)

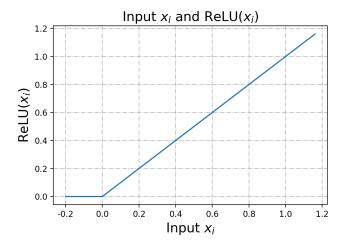


ReLU

A Toy Example: How an IF neuron approximates the ReLU activation



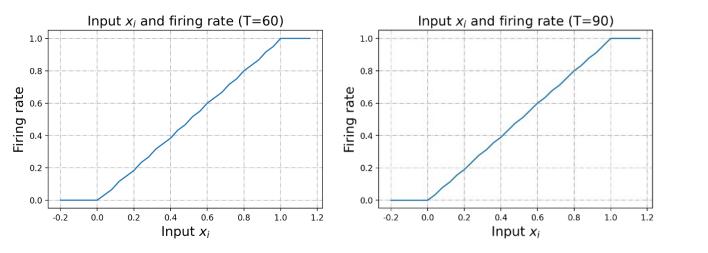
T=10



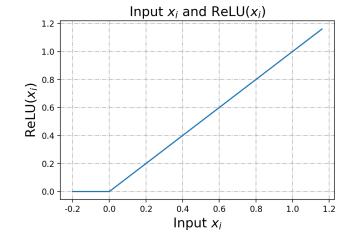
ReLU

A Toy Example: How an IF neuron approximates the ReLU activation

T=90



T=60



ReLU

TABLE OF CONTENTS

Background

Graphs & Graph Neural Networks Graph Self-supervised Learning Spiking Neural Networks SpikeGCL: Spiking Graph Contrastive Learning Theoretical Insights **Experiments & Results** Conclusion

Experiment Setup

9 real-world graph datasets

 $\hfill\square$ Node classification task with ACC as the metric

□ Supervised and self-supervised baselines, including binarized, full-precision,

and spike-based methods

□ SpikeGCL is a self-supervised, binarized, and spike-based method

2k

	Computers	Photo	CS	Physics	Cora	CiteSeer	PubMed	arXiv	MAG
#Nodes	13,752	7,650	18,333	34,493	2,708	3,327	19,717	16,9343	736,389
#Edges	491,722	238,162	163,788	495,924	10,556	9,104	88,648	2,315,598	10,792,672
#Features	767	745	6,805	8,415	1,433	3,703	500	128	128
#Classes	10	8	15	5	7	6	3	40	349
Density	0.144%	0.082%	0.023%	0.407%	0.260%	0.049%	0.042%	0.008%	0.002%

736k

scale

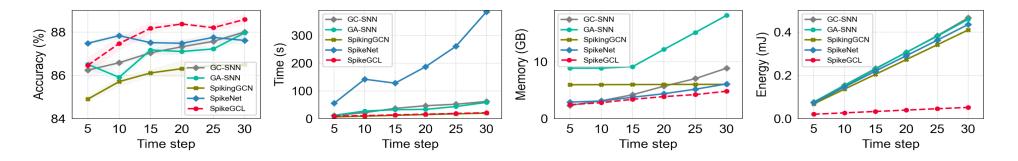
U: unsupervised or self-supervised; S: spike-based; B: binarized

	U	S	B	Computers	Photo	CS	Physics	arXiv	MAG
GCN Kipf & Welling (2016) GAT Veličković et al. (2018)				$\begin{array}{ c c c c c c c c } & 86.5_{\pm 0.5} \\ & 86.9_{\pm 0.2} \end{array}$	$\begin{array}{c} 92.4_{\pm 0.2} \\ 92.5_{\pm 0.3} \end{array}$	$92.5_{\pm 0.4}\\92.3_{\pm 0.2}$	$95.7_{\pm 0.5} \\ 95.4_{\pm 0.3}$	$\begin{array}{c} 70.4_{\pm 0.3} \\ 70.6_{\pm 0.3} \end{array}$	$\begin{array}{c} 30.1_{\pm 0.3} \\ 30.5_{\pm 0.3} \end{array}$
SpikeNet Li et al. (2023b) SpikingGCN Zhu et al. (2022) GC-SNN Xu et al. (2021) GA-SNN Xu et al. (2021)		\ \ \ \		$\begin{array}{c c} 88.0_{\pm 0.7} \\ 86.9_{\pm 0.3} \\ 88.2_{\pm 0.6} \\ 88.1_{\pm 0.1} \end{array}$	$\begin{array}{c} 92.9_{\pm 0.1} \\ 92.6_{\pm 0.7} \\ 92.8_{\pm 0.1} \\ \textbf{93.5}_{\pm 0.6} \end{array}$	$\begin{array}{c} \textbf{93.4}_{\pm 0.2} \\ 92.6_{\pm 0.3} \\ 93.0_{\pm 0.4} \\ 92.2_{\pm 0.1} \end{array}$	$\begin{array}{c} \textbf{95.8}_{\pm 0.7} \\ \textbf{94.3}_{\pm 0.1} \\ \textbf{95.6}_{\pm 0.7} \\ \textbf{95.8}_{\pm 0.5} \end{array}$	$66.8_{\pm 0.1}$ $55.8_{\pm 0.7}$	- - -
Bi-GCN Wang et al. (2021) BinaryGNN Bahri et al. (2021) BANE Yang et al. (2018)	✓		\ \ \ \	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 92.1_{\pm 0.9} \\ 92.4_{\pm 0.2} \\ 78.2_{\pm 0.3} \end{array}$	$\begin{array}{c} 91.0_{\pm 0.7} \\ 91.2_{\pm 0.1} \\ 92.8_{\pm 0.1} \end{array}$	$\begin{array}{c} 93.3_{\pm 1.1} \\ 95.3_{\pm 0.1} \\ 93.4_{\pm 0.4} \end{array}$	$66.0_{\pm 0.8} \\ 67.2_{\pm 0.9} \\ > 3 days$	28.2 _{±0.4}
DGI Velickovic et al. (2019) GRACE Zhu et al. (2020) CCA-SSG Zhang et al. (2021) BGRL Thakoor et al. (2021) SUGRL Mo et al. (2022) GGD Zheng et al. (2022)				$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 91.6_{\pm 0.2} \\ 92.2_{\pm 0.2} \\ 93.1_{\pm 0.1} \\ 93.2_{\pm 0.3} \\ 93.2_{\pm 0.4} \\ 92.9_{\pm 0.2} \end{array}$	$\begin{array}{c} 92.2_{\pm 0.6} \\ 92.9_{\pm 0.0} \\ 93.3_{\pm 0.1} \\ 93.3_{\pm 0.1} \\ 93.4_{\pm 0.0} \\ 93.1_{\pm 0.1} \end{array}$	$\begin{array}{c} 94.5_{\pm 0.5}\\ 95.3_{\pm 0.0}\\ 95.7_{\pm 0.1}\\ 95.7_{\pm 0.0}\\ 95.2_{\pm 0.0}\\ 95.3_{\pm 0.0}\end{array}$	$\begin{array}{c} 65.1_{\pm 0.4} \\ 68.7_{\pm 0.4} \\ 71.2_{\pm 0.2} \\ 71.6_{\pm 0.1} \\ 68.8_{\pm 0.4} \\ \textbf{71.6}_{\pm 0.5} \end{array}$	$\begin{array}{c} 31.4_{\pm 0.3} \\ 31.5_{\pm 0.3} \\ 31.8_{\pm 0.4} \\ 31.1_{\pm 0.1} \\ \textbf{32.4}_{\pm 0.1} \\ 31.7_{\pm 0.7} \end{array}$
SpikeGCL	 ✓ 	1	1	$ $ 88.9 $_{\pm 0.3}$	$93.0_{\pm0.1}$	$92.8_{\pm0.1}$	$95.2_{\pm 0.6}$	$70.9_{\pm0.1}$	$32.0_{\pm 0.3}$

Comparable performance on node classification tasks

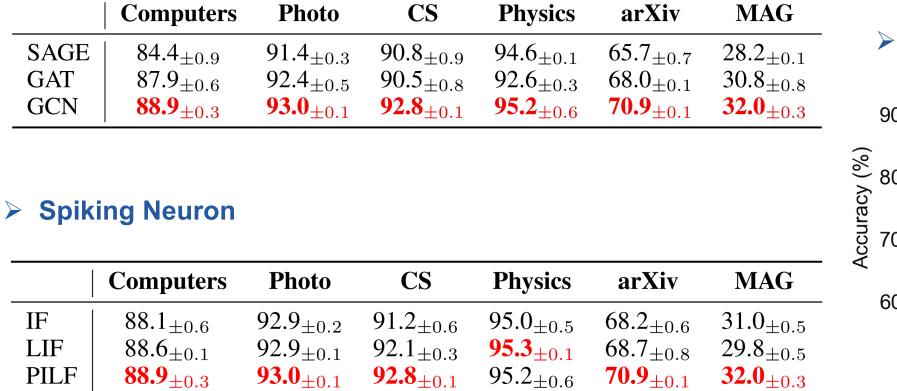
RESULTS Efficiency

	Computers		CS		Physics		arXiv		MAG	
	#Param↓	Energy↓	#Param↓	Energy↓	#Param↓	Energy↓	#Param↓	Energy↓	#Param↓	Energy↓
DGI	917.5	0.5	4008.9	8	4833.3	6	590.3	5	590.3	568
GRACE	656.1	1.1	3747.5	17	4571.9	13	328.9	21	328.9	4463
CCA-SSG	262.4	17	1808.1	152	2220.2	352	98.8	78	98.8	340
BGRL	658.4	25	3749.8	163	4574.2	373	331.2	180	331.2	787
SUGRL	193.8	13	2131.2	147	2615.1	342	99.5	26	99.5	117
GGD	254.7	15	3747.3	140	4571.6	340	30.0	100	30.0	1400
Average	490.4	11.9	3198.7	104.5	3906.0	237.6	246.4	68.3	246.4	1279.1
SpikeGCL	60.9	0.038	460.7	0.048	564.4	0.068	7.3	0.2	6.6	0.18

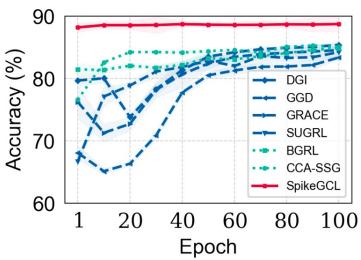


SpikeGCL has significant advantages in terms of parameters, speed, memory usage, and energy consumption

GNN Encoder

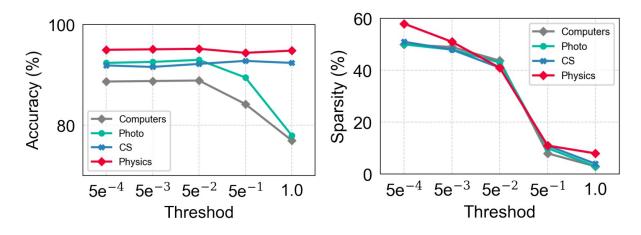


Convergence



RESULTS Ablation Study

Firing Threshold



Connections between Input Features and Output Spikes

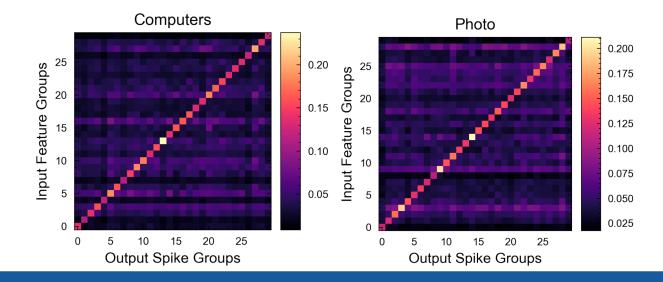


TABLE OF CONTENTS

Background

Graphs & Graph Neural Networks Graph Self-supervised Learning Spiking Neural Networks SpikeGCL: Spiking Graph Contrastive Learning Theoretical Insights □ Experiments & Results Conclusion

CONCLUSION

- 1. Self-supervised and binarized representation learning problem on graphs with SNNs
- 2. SpikeGCL, a binarized contrastive learning framework for graphs with theoretical performance guarantees
- 3. Blockwise training, a local learning paradigm to prevent SNNs from vanishing gradients and network degradation
- 4. SpikeGCL exhibits comparable performance and additional advantages in terms of parameters, speed, memory usage, and energy consumption

Thanks & QA?

https://github.com/EdisonLeeeee/SpikeGCL

https://edisonleeeee.github.io/

Jintang Li Sun Yat-sen University

lijt55@mail2.sysu.edu.cn

