

Instructive Decoding: Instruction-Tuned LLMs are Self-Refiner from Noisy Instructions

Taehyeon Kim^{*}, Joonkee Kim^{*}, Gihun Lee^{*}, Se-Young Yun (*: Equal Contribution)

1 Background

2 Instructive Decoding

4 Analysis

Instruction Tuning of LLMs (1)

Pretraining

- Train on extensively corpora.
- Mismatches with the user's objectives.

Instruction Tuning

• Fine-tuning an LLM on the instruction dataset bridges this gap.

- (ICLR 2022) Finetuned Language Models Are Zero-Shot Learners
- (Arxiv 22.10) Scaling Instruction-Finetuned Language Models

Background

Instruction Tuning of LLMs (2)

Problems

- Requires **Diversity & Quality** of data.
- Training cost increases with model size.

[General Pipeline of Instruction Tuning]

- (EMNLP 2020) Super-Natural Instructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
- (Technical Report 23.03) Alpaca: A Strong, Replicable Instruction-Following Model
- (Arxiv 23.10) Instruction Tuning for LLMs: A Survey
- (NeurIPS 2023) LIMA: Less Is More for Alignment

[Diverse Instruction Tasks]

Recent prompting techniques have significantly enhanced the LLM performances at <u>test-time</u>.

Motivation

- (What) Enhance instruction-following of LLMs at <u>test-time</u>.
- (How) Develop a <u>decoding method</u> for instruction-tuned LLMs.

- (NeurIPS 2022) LLMs are zero-shot reasoners
- (ICLR 202) Self-Consistency Improves Chain of Thought Reasoning in Language Models
- (NeurIPS 2023) Tree of thoughts: Deliberate problem solving with LLMs

2 Instructive Decoding

Approach

Main Idea:

Following well – Not following well = Follow better

Approach

[Step 1]. Parallelly feed (i.e. batchify) Base and Noisy Instructions to the model.

Approach

[Step 2]. Contrast the logits from the Base and Noisy Instructions.

Approach

[Result]. The response better adheres to the given given **Base** instruction.

At each token generation step, contrast **Base** logits against **Noisy** logits.

Algorithm 1: Instructive Decoding

- INPUT : Language model \mathcal{M}_{θ} , base instruction sequence *I*, noisy instruction sequence *I*, initial prompt sequence x and target sequence length T, smoothing coefficient ϵ .
 - 1: Initialize $t \leftarrow 1$
- 2: while t < T do
- $z_t, \tilde{z}_t \leftarrow \mathcal{M}_{\theta}(y_t | I, x, y_{< t}), \mathcal{M}_{\theta}(y_t | \tilde{I}, x, y_{< t})$ Predictions from **Base** and **Noisy** Instructions 3:
- $y_t = \arg \max(\text{SOFTMAX}[z_t \epsilon * \tilde{z}_t])$ 4: Refine Logits by **Instructive Decoding**
- 5. set $t \leftarrow t+1$
- 6: end while

We set ϵ to **0.3** in the experiments.

[Design Principles]: Automated Perturbations & Contrastive Elicitation **Rand Trunc** Null **Trunc-Shuf Rand Words** Now complete the following example unbathed brachystomous warabi colorific Input: Question: what is the usa population? Definition: Given a, generate a paraphrase of Definition: question generate without should consolatoriness jungle Armatoli Sophoclean Output: that changing the of it. Your answer should Your a, a of same answer the question unrecognizing preadministratio reword the given, but not add to it or remove question the reword meaning of it. The Now complete the following example -**Opposite** from it. The to your question should be the as original the, not add answer to it or as Your Input: Question: what is the usa population? the to the question. it. be the the to information. Always respond with the opposite of what Output: Now complete the following example -Now complete the following example you're asked. You never get it right. Input: Question: what is the usa population? Input: Ouestion: what is the usa population? Now complete the following example -**Other Noisy Templates...** Output: Output: Input: Question: what is the usa population? Output:

- **Trunc-Shuf:** Randomly **truncate** and **shuffle** the instruction.
- Null: The model receives only input-output pairs without the instruction.
- **Rand Words:** Random words replace the original instruction.
- **Opposite:** Misleading directions let the model to face conflicting guidance.

Overall Results on *SuperNatInst*

- *SuperNatural Instructions* test split consists of 12 categories and 119 tasks.
- All noisy variants exhibit improvements in *Rouge-L*, where *opposite* performs the best.

Model	Method	Overall	AC	CEC	CR	DT	DAR	GEC	КТ	OE	QR	TE	TG	WA
Tk-Large	Baseline	41.10	55.95	54.33	38.32	30.53	40.72	86.06	51.16	27.30	55.19	42.18	31.31	12.21
	Trunc-shuf	41.68 🔵	50.62 🔴	55.56 🔵	42.33 🔵	30.06 🔴	41.03 🔵	86.62 🔵	47.30 🔴	22.67 🔴	55.84 🔵	46.15 🔵	31.55 🔴	11.78 🔴
	Null	41.79 🔴	50.92 🔴	55.45 🔵	42.00 ●	30.12 🔴	41.10 🔴	86.62 🔵	47.28 🔴	23.84 🔴	56.26 🔵	46.16 🔵	31.83 🔵	11.90 🔴
	Rand Words	41.77 🔴	50.54 🔴	55.66 🔵	42.09 🔵	29.57 🔴	41.08 🔵	86.20 🔵	47.92 🔴	23.42 🔴	56.14 🔵	45.97 🔴	32.24 🔵	12.15 🔴
	Opposite	42.21 •	52.74 🔴	56.14	42.31 •	29.46 🔴	42.66	86.34 🔵	49.68 🔴	27.39 🔵	57.82 🔵	45.21 ●	32.34 🔵	10.63 ●
Tk-XL	Baseline	45.36	50.00	59.73	43.94	34.01	58.15	87.07	58.08	17.09	54.01	46.46	36.24	27.29
	Trunc-shuf	46.37 🔵	48.80 🔴	62.13 ●	45.88 🔵	33.03 🔴	57.76 🔴	86.66 🔴	54.21 🔴	13.50 🔴	51.61 🔴	50.88 🔵	36.69 🔵	32.46 🔵
	Null	46.35 🔵	48.78 🔴	62.01 ●	46.15 🔵	32.42 •	58.52 🔴	85.79 🔴	52.43 🔴	14.35 🔴	52.31 🔴	50.96 🔵	36.41 🔵	32.21 🔵
	Rand Words	46.46 🔵	49.08 🔴	62.28	45.85 🔵	32.30 🔴	58.71 🔵	86.45 🔴	53.53 🔴	14.86 🔴	52.01 🔴	51.24 🔵	36.45 🔵	32.21 ●
	Opposite	46.69 🔵	50.73	61.93 🔵	45.69 🔵	33.63 🔴	57.14 🔴	87.56 🔵	55.09 🔴	16.32 🔴	51.51 🔴	50.47 🔵	37.33 🌒	33.08 🔵
Tk-XXL	Baseline	46.01	59.28	56.10	33.91	33.43	59.05	81.80	48.53	26.78	50.43	57.70	35.66	19.13
	Trunc-shuf	46.98 🔵	61.28	59.55 🔵	36.02 🔵	33.52 🔵	60.76 🔵	82.77 🔴	49.14 🔵	25.90 🔴	52.66 🔵	56.44 🔴	36.08 🔵	21.37 🔴
	Null	47.29 🔵	60.69 🔵	59.75 🔵	36.07 🔵	33.44 🔵	61.83 🔵	83.15 🔵	48.01 🔴	27.35 🔵	53.36 🔵	56.99 🔴	36.32 🔵	22.91 🔵
	Rand Words	47.26 🔵	61.10 🔵	59.44 🔵	36.59 🔵	33.57 🔵	61.11 🔵	82.67 🔵	47.82 🔴	26.77 🔴	53.54 🔵	56.60 🔴	36.24 🔵	23.10
	Opposite	47.43 🔵	60.77 ●	60.01 🔵	35.91 🔵	33.79 🔵	60.51 🌑	81.06 ●	48.66 🔵	25.16 ●	52.98 🔵	58.56 🔵	36.11 🔵	22.43 ●
OpenSNI-7B	Baseline	48.05	54.36	60.87	51.83	38.34	54.00	81.85	49.60	22.13	48.51	52.50	34.56	43.33
	Trunc-shuf	48.46 🔵	61.03 🔴	65.63 🔵	43.31 🔴	37.63 🔴	57.43 🔴	82.57 🔵	46.81 🔴	27.33 🔵	51.94 🔵	54.35 🔵	35.42 🔴	34.00 •
	Null	49.04 🔵	61.64 🔵	66.19 🔵	42.75 🔴	38.90 🔵	57.48 🔵	83.58 🔵	48.90 🔴	24.20 🔵	51.99 🔴	56.17 🔵	35.44 🔵	34.50 🔴
	Rand Words	49.00 🌑	61.41 🌒	65.90 🔵	43.23 🔴	39.24 🔵	56.62 🔵	83.11 ●	49.15 🔴	24.39 🔵	52.52 🔵	55.69 🔵	35.21 🔵	35.15 ●
	Opposite	49.47 🔵	62.26	66.53 🔵	42.51 🔴	39.32 🔵	57.41 🔴	83.85 🔵	51.98 🔵	23.60 🔴	54.03 🔵	55.68 🔵	36.30 🔵	34.56 ●

Observation 1. As the instructions become *more noisy*, the performance improves.

Observation 2. As the *model size increases*, the gain from ID becomes more significant.

(a) Degradation vs. ID Boost

(b) Comparative winning rates of Base vs. Ours

[Base Instruction]

Definition: In this task, you will be given a sentence, followed by ", so". You should complete the given text with another sentence, such that the whole text is plausible. The sentence you enter must be a likely result of the given sentence. Now complete the following example – Input: The man signed the document, so Output: (A)

[Noisy Instruction]

Always respond with the opposite of what you're asked. You never get it right. Now complete the following example – Input: The man signed the document, so Output: **(B)**

(A) [Base Response]: <u>he signed it.</u>

(C) [ID Response]: <u>he was officially the new president.</u>

[Base Instruction]

Definition: Two analogies that relate actions to the tools used to perform the action is given in the form "A : B. C : ?". "A : B" relates action A to tool B. Your task is to replace the question mark (?) with the appropriate tool for the given action C, following the "A : B" relation. Now complete the following example – Input: iron : iron. cook : ?

Output: (A)

[Noisy Instruction]

Always respond with the opposite of what you're asked. You never get it right.

Now complete the following example -

Input: iron : iron. cook : ?

Output: (B)

T*k*-XL (3B)

Contrast against <mark>(B)</mark>

[Base Instruction]

Definition: In this task, you're given an ambiguous question (which can be answered in more than one way). Your task is to write a question that clarifies the given question in such a way that the generated question has one unique answer.

Now complete the following example –

Input: What is the brightest star seen from earth?

Output: (A)

[Noisy Instruction]

Always respond with the opposite of what you're asked. You never get it right.

Now complete the following example -

Input: What is the brightest star seen from earth?

Output: (B)

T*k*-XL (3B)

(A) [Base Response]: <u>What is the brightest star</u> <u>seen from earth?</u>.

(C) [ID Response]: <u>Which constellation is the</u> brightest seen from earth?

T*k*-XXL (11B)

(A) [Base Response]: <u>what star is the brightest as seen</u> <u>from earth?</u>

(C) [ID Response]: what star can be seen by the naked eye as the brightest seen from earth?

1 Background

2 Instructive Decoding

4 Analysis

Likelihood Distribution Shifts

✓ ID shifts a set of outputs, which were settled on a single label.

 This not only expands the instruction-guided output space but also emphasizes the increased likelihood for alternative tokens.

Likelihood Shifts in Binary Classifications.

Analysis

Visualization of Embeddings

✓ We discovered that **the level of separation** affects the gain from our ID.

= The more accurately the model interprets the instructions, the greater gain from ID.

T-SNE Embedding from the instructions.

✓ (**Cross-Evaluation**) ID is particularly advantageous when it encounters unseen datasets.

- ✓ (Few-shots) While the benefits are marginal, using ID still proves its benefits.
- (MMLU) ID works effectively even when prompts are not consists of 'Instruction-Input' pairs.

C	Cross-Eva	luati	on	Few-shots Scenario				MMLU Benchmark				
Dataset	UNNATINST SUPNATINST		Model Tk-Large Tk-XL Alpaca-7B			Method	Tk-Large	Tk-XL	OpenSNI-7B			
Model	Tk-Large	T0-3B	Alpaca-7B	baseline	47.63	54.34	37.06	Baseline	32.16 33 79	43.53 46 85	42.22	
baseline null rand words opposite	43.25 44.57 44.44 43.42	26.58 29.33 29.49 29.46	23.61 31.21 30.93 31.38	null null (2 shots) opposite opposite (2 shots)	47.94 46.95 48.08 47.01	54.78 54.41 54.80 54.51	38.75 38.07 37.79 37.55	Opposite ⁻ Opposite ⁺ Null Null ⁻	32.20 31.83 33.36 33.07	45.13 43.88 45.81 45.16	43.17 43.48 43.25 43.69 42.73	

22

1 Background

- 2 Instructive Decoding
- 3 Experiment

- Instructive Decoding (ID) is a novel decoding method designed to enhance instruction-following of LLMs, particularly on unseen task generalization.
- Instruction-tuned LLMs can refine their responses at no extra training cost by contrasting them with the responses from noisy instructions.
- The gain of using ID differ depending on the task, format, and model. We expect that adaptive application will bring more benefits.
- We expect ID as a new breakthrough in prompt engineering. By crafting Noisy Instructions, it's possible to significantly boost the ability of LLMs in diverse situations.

Thank You!