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Instruction Tuning of LLMs (1) Background

• (ICLR 2022) Finetuned Language Models Are Zero-Shot Learners
• (Arxiv 22.10) Scaling Instruction-Finetuned Language Models 

• Train on extensively corpora.
• Mismatches with the user’s objectives.

• Fine-tuning an LLM on the instruction 
dataset bridges this gap.

Pretraining

Instruction Tuning

https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2210.11416
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Instruction Tuning of LLMs (2) Background

• (EMNLP 2020) Super-Natural Instructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
• (Technical Report 23.03) Alpaca: A Strong, Replicable Instruction-Following Model
• (Arxiv 23.10) Instruction Tuning for LLMs: A Survey
• (NeurIPS 2023) LIMA: Less Is More for Alignment

[Diverse Instruction Tasks][General Pipeline of Instruction Tuning]

• Requires Diversity & Quality of data.
• Training cost increases with model size.

Problems

https://arxiv.org/abs/2204.07705
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2305.11206


5

Test-time Approach Background

• (NeurIPS 2022) LLMs are zero-shot reasoners
• (ICLR 202) Self-Consistency Improves Chain of Thought Reasoning in Language Models
• (NeurIPS 2023) Tree of thoughts: Deliberate problem solving with LLMs

Base CoT Self-
Consistency

ToT (Tree of Thoughts)

Recent prompting techniques have significantly enhanced the LLM performances at test-time.

• (What) Enhance 
instruction-following of 
LLMs at test-time.

• (How) Develop a 
decoding method for 
instruction-tuned LLMs.

Motivation

https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://arxiv.org/abs/2203.11171
https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
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Instructive Decoding Approach

Following well – Not following well = Follow betterMain Idea:
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Instructive Decoding Approach

[Step 1]. Parallelly feed (i.e. batchify) Base and Noisy Instructions to the model.
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Instructive Decoding Approach

[Step 2]. Contrast the logits from the Base and Noisy Instructions.
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Instructive Decoding Approach

[Result]. The response better adheres to the given given Base instruction.
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Instructive Decoding Approach

Predictions from Base and Noisy Instructions

Refine Logits by Instructive Decoding

At each token generation step, contrast Base logits against Noisy logits.

We set 𝜖 to 0.3 in the experiments.
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Noisy Instructions Approach

[Design Principles]: Automated Perturbations & Contrastive Elicitation

§ Trunc-Shuf: Randomly truncate and shuffle the instruction.

§ Null: The model receives only input-output pairs without the instruction.

§ Rand Words: Random words replace the original instruction.

§ Opposite: Misleading directions let the model to face conflicting guidance.
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Overall Results on SuperNatInst Experiment

§ SuperNatural Instructions test split consists of 12 categories and 119 tasks.

§ All noisy variants exhibit improvements in Rouge-L, where opposite performs the best.
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Key Observations

Observation 1. As the instructions become more noisy, the performance improves.

Observation 2. As the model size increases, the gain from ID becomes more significant.

Experiment
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ID Case 1: Plausible Result Generation Example

Definition: In this task, you will be given a sentence, followed by ", so". You should 
complete the given text with another sentence, such that the whole text is plausible. The 
sentence you enter must be a likely result of the given sentence. 
Now complete the following example –
Input: The man signed the document, so 
Output: (A)

[Base Instruction]

Always respond with the opposite of what you're asked. You never get it right. 
Now complete the following example –
Input: The man signed the document, so 
Output: (B)

[Noisy Instruction]

(A) [Base Response]: he signed it.

(C) [ID Response]: he was officially the new president.
s

Contrast 
against (B)

OpenSNI 
(7B)
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ID Case 2: Analogical Reasoning - Tools Example

Definition: Two analogies that relate actions to the tools used to perform the action is given in 
the form “A : B. C : ?”. “A : B” relates action A to tool B. Your task is to replace the question mark 
(?) with the appropriate tool for the given action C, following the “A : B” relation.
Now complete the following example –
Input: iron : iron. cook : ?
Output: (A)

[Base Instruction]

Always respond with the opposite of what you're asked. You never get it right. 
Now complete the following example –
Input: iron : iron. cook : ?
Output: (B)

[Noisy Instruction]

(A) [Base Response]: 1000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

(C) [ID Response]: 1000 degree oven

Contrast
against (B)

Tk-XL
(3B)
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ID Case 3: Ambiguous Question Rewriting Example

Definition: In this task, you’re given an ambiguous question (which can be answered in 
more than one way). Your task is to write a question that clarifies the given question in 
such a way that the generated question has one unique answer.
Now complete the following example –
Input: What is the brightest star seen from earth?
Output: (A)

[Base Instruction]

Always respond with the opposite of what you're asked. You never get it right. 
Now complete the following example –
Input: What is the brightest star seen from earth?
Output: (B)

[Noisy Instruction]

(A) [Base Response]: What is the brightest star 
seen from earth?.

(C) [ID Response]: Which constellation is the 
brightest seen from earth?

s

(A) [Base Response]: what star is the brightest as seen 
from earth?
(C) [ID Response]: what star can be seen by the naked 
eye as the brightest seen from earth?

Tk-XL (3B) Tk-XXL (11B)
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Likelihood Distribution Shifts Analysis

ü ID shifts a set of outputs, which were settled on a single label.

ü This not only expands the instruction-guided output space but also emphasizes the 
increased likelihood for alternative tokens.

Likelihood Shifts in Binary Classifications.
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Visualization of Embeddings Analysis

ü We discovered that the level of separation affects the gain from our ID.

= The more accurately the model interprets the instructions, the greater gain from ID.

T-SNE Embedding from the instructions.
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Generalization Capabilities

MMLU BenchmarkFew-shots ScenarioCross-Evaluation

ü (Cross-Evaluation) ID is particularly advantageous when it encounters unseen datasets.

ü (Few-shots) While the benefits are marginal, using ID still proves its benefits.

ü (MMLU) ID works effectively even when prompts are not consists of ‘Instruction-Input’ 
pairs.

Analysis
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Conclusion Takeaways

§ Instructive Decoding (ID) is a novel decoding method designed to enhance 
instruction-following of LLMs, particularly on unseen task generalization.

§ Instruction-tuned LLMs can refine their responses at no extra training cost by 
contrasting them with the responses from noisy instructions.

§ The gain of using ID differ depending on the task, format, and model. We expect 
that adaptive application will bring more benefits.

§ We expect ID as a  new breakthrough in prompt engineering. By crafting Noisy 
Instructions, it's possible to significantly boost the ability of LLMs in diverse situations.
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Thank You!


