
Fast Value Tracking for Deep Reinforcement Learning
Frank Shih and Faming Liang Department of Statistics, Purdue University

MOTIVATION

An ideal Deep RL algorithm should exhibit the following characteristics:

• Uncertainty Quantification
Enhances policy robustness by addressing the stochastic nature of agent-environment interac-
tions.

• Nonlinear approximation
Increases the applicability of the algorithm by using DNN to approximate Q-functions.

• Computational efficiency
Facilitates online learning by scaling with respect to model dimensions and training sample size.

BRIEF RECAP OF REINFORCEMENT LEARNING

Q-Learning
Agents learn optimal policies via the state-action function (Q-function), defined as follows:

Qρ(s, a) = Eρ[
∞∑

t=0
γtrt|s0 = s, a0 = a]

where ρ represents the policy and γ is the discount factor. The Q-function can be learned by minimizing
the Mean Squared Bellman Error (MSBE):

min
ρ

E(s,a,r,s′,a′)∼ρ[(Qρ(s, a) − r − γQρ(s′, a′))2]

Deep Q-Network (DQN)
The DQN algorithm utilizes a deep neural network to approximate the Q-function as Qθ, with weights
θ. These weights can be updated via the semi-gradient of the Temporal Difference (TD) error:

θt = θt−1 − ϵt[Qθ(s, a) − r − γ max
a

Qθ′(s′, a)]∇θQθ(s, a),

where θ′ denotes the target network weights. The DQN algorithm is effective in solving deep reinforce-
ment learning problems using optimization algorithms such as SGD, Adam, and RMSprop. However,
due to the nature of these optimization algorithms, DQN may fail to accurately quantify uncertainties.

✔ Nonlinear approximation, computational efficiency.
✘ Uncertainty quantification.

Kalman Temporal Difference (KTD)
The KTD algorithm solves RL problems under the Kalman Filter paradigm through a state-space
reformulation:

θt = θt−1 + wt,

rt = h(xt, θt) + ηt,

where xt = (s, a, s′, a′) is the transition tuple generated by the policy at time t, and h(xt, θt) =
Qθt

(s, a) − γQθt
(s′, a′). The KTD framework operates under the assumption of Gaussian distributions

and linear measurement functions. To address the nonlinearity of deep neural networks, linearization
techniques are required. However, KTD encounters several challenges:

(i) Accuracy for the true filtering distribution of θt is unknown
(ii) High computational complexity O(np2)

(iii) High memory complexity, necessitating O(p2) additional space for the covariance matrix.

✔ Uncertainty quantification.
✘ Nonlinear approximation, computational efficiency.

STATE-SPACE MODEL REFORMULATION

To address the limitations of DQN and KTD, we reformulate RL using the following State-Space Model:

θt = θt−1 + ϵt

2 ∇θ log π(θt−1) + wt,

rt = h(xt, θt) + ηt,
(1)

where wt ∼ N(0, ϵtIp), π(θ) represents a prior density, and ϵt is the decaying learning rate. With
the formulation (1) and our algorithm, θt converges to a proper distribution as t → ∞, enabling the
uncertainty to be properly quantified. Inclusion of the prior information in the state evolution equation
generally robustifies the performance of the RL algorithm.

LANGEVINIZED KALMAN TEMPORAL DIFFERENCE (LKTD)

The LKTD algorithm is designed to solve equation (1). We apply the variance splitting technique to
convert the model (1) into a state-space model with a linear measurement equation, while allowing the
state evolution equation to be nonlinear. WLOG, we assume ηt ∼ N(0, σ2In) for each stage t. By the
state augmentation approach, we define

φt =
(

θt

ξt

)
, ξt = h(xt; θt) + ut, ut ∼ N(0, ασ2In),

where ξt is an n-dimensional vector, and 0 < α < 1 is a pre-specified constant. Suppose that θt has
a prior distribution π(θ) as specified previously, the joint density function of φt = (θ⊤

t , ξ⊤
t )⊤ is given

by π(φt) = π(θt)π(ξt|θt), where ξt|θt ∼ N(h(xt; θt), ασ2I). Based on Langevin dynamics, we can
reformulate (1) as the following model:

φt = φt−1 + ϵt

2
n

N
∇φ log π(φt−1) + w̃t,

rt = Htφt + vt,

where N > 0, w̃t ∼ N(0, n
N Bt), Bt = ϵtIp̃, p̃ = p + n is the dimension of φt; Ht = (0, In) such that

Htφt = ξt; vt ∼ N(0, (1−α)σ2In), which is independent of w̃t for all t. We call N the pseudo-population
size, which scales uncertainty of the estimator of the system.

TRAINING ALGORITHM

Algorithm 1. (Langevinized Kalman temporal difference for nonlinear approximation)

0. (Initialization) Draw θa
0 ∈ Rp drawn from the prior distribution π(θ). For each stage t = 1, 2, . . . , T , do

the following steps 1-4:

1. (Sampling) With policy ρθa
t−1

, generate a set of n transition tuples, denoted by zt = (rt,xt) :=
{r

(j)
t , x

(j)
t }n

j=1, where x
(j)
t = (s(j)

t , a
(j)
t , s

(j)
t+1, a

(j)
t+1)T . For each iteration k = 1, . . . , K, do the following

steps 2-4:

2. (Presetting) Set Bt,k = ϵt,kIp̃, Rt = 2(1−α)σ2I , and Kalman gain Kt,k = Bt,kH⊤
t (HtBt,kH⊤

t +Rt)−1

3. (Forecast) Draw w̃t,k ∼ Np(0, n
N Bt,k) and calculate

φf
t,k = φa

t,k−1 + ϵt,k

2
n

N
∇φ log π(φa

t,k−1) + w̃t,k,

where φa
t,0 = (θa

t−1,K
⊤, r⊤

t )⊤ if k = 1, and the gradient term is given by

∇φ log π(φa
t,k−1) =

(
∇θ log π(θt,k−1) + 1

ασ2
N
n ∇θh(xt; θt,k−1)(ξt,k−1 − h(xt; θt,k−1))

− 1
ασ2 (ξt,k−1 − h(xt; θt,k−1))

)
.

4. (Analysis) Draw vt,k ∼ Nn(0, n
N Rt) and calculate

φa
t,k = φf

t,k + Kt,k(rt − Htφ
f
t,k − vt,k) = φf

t,k + Kt,k(rt − rf
t,k).

THEORY

As shown in our paper, Algorithm 1 is an preconditioned SGLD algorithm. To establish the convergence
theory, it suffices to prove the convergence of the following SGLD sampler in the RL context:

θk = θk−1 + ϵkG(θk−1, zk) +
√

2β−1ϵkek, (2)

where ek ∼ N(0, Id), β is the inverse temperature, and zk is the transition tuple.

Theorem 1. Consider the SGLD sampler (2) with a polynomailly-decay learning rate ϵk = ϵ0
kϖ for some

ϖ ∈ (0, 1). Suppose the environment is stationary and some mild conditions hold. If E(G(θk−1, zk)) = g(θk−1)
holds for any stage k ∈ {1, . . . , K}, β ≥ 1 ∨ 2

mU
, then there exist constants (C0, C1, C2, C3) independent of the

learning rates such that for all K ∈ N, the 2-Wasserstein distance between µK and νN can be upper bounded by

W2(µK , νN ) ≤ (12 + C2ϵ0( 1
1 − ϖ

K1−ϖ))
1
2 · [(C1ϵ2

0( 2ϖ

2ϖ − 1) + δC0( ϵ0

1 − ϖ
K1−ϖ))

1
2

+ (C1ϵ2
0( 2ϖ

2ϖ − 1) + δC0( ϵ0

1 − ϖ
K1−ϖ))

1
4 ] + C3 exp

(
− 1

βcLS
( ϵ0

1 − ϖ
K1−ϖ)

)
,

where µK(θ) denotes the probability law of θK , νN (θ) ∝ exp(−βG(θ)), G(θ) = O(N ) is the anti-derivative of
g(θ), i.e., ∇θG(θ) = g(θ), and cLS denotes a logarithmic Sobolev constant satisfied by the νN .

NUMERICAL RESULTS

Escape Environment

• State space: S = {(x, y) : x, y ∈ {1, . . . , 10}}
• Action space: A = {N, E, S, W}
• Reward: N (−1, 0.01)
• Discount factor: γ = 0.9

In this toy example, we demonstrate the ability to accurately quantify uncertainty using the following
metrics:

• MSE: Measures the accuracy of Q-value estimation.
• CR: Indicates the coverage rate of the 95% prediction interval.

The figures below illustrate that the LKTD algorithm outperforms competing algorithms in terms of
estimation accuracy and uncertainty quantification. These experiments were replicated 100 times and
are represented in the boxplot.

CLASSIC CONTROL PROBLEM (OPENAI GYM)

This experiment showcases the performance of LKTD compared to DQN and Quantile Regression
DQN (QR-DQN) across three metrics:

1. Training reward: The reward score achieved through training phase.
2. Evaluation reward: The reward evaluated for the current model.
3. Best model reward: The reward evaluated for the best-learned model.

The figures below demonstrates that LKTD achieves higher training and evaluation rewards compared
to DQN and QR-DQN. In terms of robustness, LKTD exhibits a higher lower bound for reward curves
and achieves optimal policies faster than the other algorithms.


