

Robust Similarity Learning with Difference Alignment Regularization Shuo Chen¹, Gang Niu¹, Chen Gong², Okan Koc¹, Jian Yang², Masashi Sugiyama^{1,3} **1. RIKEN Center for Advanced Intelligence Project 2. Nanjing University of Science and Technology 3. The University of Tokyo**

Abstract

Similarity-based representation learning has shown impressive capabilities in both supervised (e.g., metric learning) and unsupervised (e.g., contrastive learning) scenarios. Existing approaches effectively constrained the representation difference (i.e., the disagreement between the embeddings of two instances) to fit the corresponding (pseudo) similarity supervision. However, most of them can hardly restrict the variation of representation difference, sometimes leading to overfitting results where the clusters are disordered by drastically changed differences. We propose a novel difference alignment regularization (DAR) to encourage all representation differences between inter-class instances to be as close as possible, so that the learning algorithm can produce consistent differences to distinguish data points from each other. To this end, we construct a new cross-total-variation (CTV) norm to measure the divergence among representation differences. Experiments on multi-domain data demonstrate the superiority of DASL in both supervised metric learning and unsupervised contrastive learning tasks.

Formulation and Algorithm

Higher-Order Difference

 $abla_{\varphi}^{(2)}(\boldsymbol{x}, \widehat{\boldsymbol{x}}, \boldsymbol{z}, \widehat{\boldsymbol{z}}) = \nabla_{\varphi}^{(1)}(\boldsymbol{x}, \widehat{\boldsymbol{x}}) - \nabla_{\varphi}^{(1)}(\boldsymbol{z}, \widehat{\boldsymbol{z}}), \quad \text{(the difference between differences)}$ $\sum_{1 \leq i < j \leq N, \, 1 \leq k < l \leq N, \, (i,j)
eq (k,l), y_i
eq y_j, y_k
eq y_l} \mathcal{G}\left(
abla_{oldsymbol{arphi}}^{(2)}(oldsymbol{x}_i, oldsymbol{x}_j, oldsymbol{x}_k, oldsymbol{x}_l)
ight)$ $= 2 \left\| \left[\nabla_{\boldsymbol{\varphi}}^{(1)}(\boldsymbol{x}_1, \boldsymbol{x}_2), \dots, \nabla_{\boldsymbol{\varphi}}^{(1)}(\boldsymbol{x}_i, \boldsymbol{x}_j), \dots, \nabla_{\boldsymbol{\varphi}}^{(1)}(\boldsymbol{x}_{N-1}, \boldsymbol{x}_N) \right]_{1 \le i < j \le N, y_i \ne y_j} \right\|_{\text{ctr}}$

A CTV-Norm based Regularizer

 $\min_{\varphi \in \mathcal{H}} \{ \mathcal{F}(\varphi) = \mathcal{L}_{emp}(\varphi; \mathscr{X}) + \lambda \mathcal{R}_{align}(\varphi; \mathscr{X}) \} \text{ (the regularizer is independent of L)}$

 $\mathbb{E}_{\{b_j\}_{j=0}^n} \Big\{ \Big\| \Big[\nabla_{\varphi}^{(1)}(\boldsymbol{x}_{b_0}, \boldsymbol{x}_{b_1}), \dots, \nabla_{\varphi}^{(1)}(\boldsymbol{x}_{b_i}, \boldsymbol{x}_{b_{i+1}}), \dots, \nabla_{\varphi}^{(1)}(\boldsymbol{x}_{b_{n-1}}, \boldsymbol{x}_{b_n}) \Big] \Big\|_{\mathrm{ctv}} \Big\}$

Theorem 1. The function $\|\cdot\|_{ctv} \colon \mathbb{R}^{h \times H} \to \mathbb{R}^+$ is a strictly defined norm if and only if the measure function $\mathcal{G}(\cdot) \colon \mathbb{R}^h \to \mathbb{R}^+$ is a strictly defined norm.

Learning Framework and Training Curves

Theoretical Results

Distance Difference Bound

Theorem 2. Suppose that the instances x, \hat{x}, z , and \hat{z} are independently sampled from the same distribution as the training set \mathscr{X} . Then, for any feature representation φ learned from the objective $\mathcal{F}(\boldsymbol{\varphi})$, we have that with probability at least $1 - \delta$,

(9)

 $|d_{\boldsymbol{\varphi}}(\boldsymbol{x}, \widehat{\boldsymbol{x}}) - d_{\boldsymbol{\varphi}}(\boldsymbol{z}, \widehat{\boldsymbol{z}})| \leq \xi(\lambda)(\|\boldsymbol{x} - \widehat{\boldsymbol{x}}\|_2 + \|\boldsymbol{z} - \widehat{\boldsymbol{z}}\|_2) \max\{d_{\boldsymbol{\varphi}}(\boldsymbol{t}, \widehat{\boldsymbol{t}}) | \boldsymbol{t}, \widehat{\boldsymbol{t}} \in \mathscr{X}\} \sqrt{[\ln(2/\delta)]/(2N)}\}$ where $\xi(\lambda) = L \frac{\mathcal{L}_{emp}(\varphi^{(0)}; \mathscr{X})}{\lambda}$ is monotonically decreasing w.r.t. the regularization parameter λ and the constant L > 0 is independent of φ and \mathscr{X} .

Generalization Error Bound

Theorem 3. For any φ learned from the objective $\mathcal{F}(\varphi)$ and any given constant $\delta \in (0, 1)$, we have that with probability at least $1 - \delta$,

 $|\mathcal{L}(\boldsymbol{\varphi}) - \widetilde{\mathcal{L}}(\boldsymbol{\varphi}; \mathscr{D})| \le \beta(\lambda)\omega(n)\log(1 + \max\{d_{\boldsymbol{\varphi}}(\boldsymbol{t}, \widehat{\boldsymbol{t}}) | \boldsymbol{t}, \widehat{\boldsymbol{t}} \in \mathscr{X}\})\sqrt{[\ln(2/\delta)]/(2N)}, \quad (10)$

where $\beta(\lambda) = (C + 2/C)/\lambda$ is monotonically decreasing w.r.t. λ and $\omega(n) = \log\left(\frac{e^2}{n} + 1\right)$ is monotonically decreasing w.r.t. n. Here the constant C > 0 is independent of φ and \mathscr{X} .

Experimental Results

Visualization and Ablation Study

Experiments on Supervised Metric Learning

METHOD	CAR-196				CUB-200					SOP				
	NMI	R@1	R@4	R@8	NMI	R@ 1	R@4	R@8		NMI	R@ 1	R@10	R@100	
Npair(Sohn, 2016) ProxyA.(Kim et al., 2020b)	69.50 75.72	82.57 87.71	94.97 95.76	95.92 97.86	69.53 72.31	64.52 69.72	85.63 87.01	91.15 92.41		91.11 91.02	76.21 78.39	88.43 90.48	92.08 96.16	
JDR(Chu et al., 2020) IBC(Seidenschwarz et al., 2021) AVSL(Zhang et al., 2022) MetricF.(Yan et al., 2022) ContextS.(Liao et al., 2023)	70.56 74.82 75.86 76.23 76.32	84.86 88.11 91.51 91.76 91.80	94.56 96.21 97.02 96.31 97.14	97.21 98.21 98.41 97.21 98.41	70.3274.0173.2175.4174.01	69.44 70.32 71.91 74.42 71.91	87.01 87.61 88.11 85.75 88.82	91.33 92.72 93.21 92.53 93.42		92.21 92.61 91.21 92.71 92.61	79.21 81.42 79.61 82.23 82.63	90.53 91.32 91.40 92.62 92.56	96.01 95.89 96.40 96.33 96.74	
DASL-NP (ours) DASL-PA (ours)	75.96↑ 77.32 ↑	86.34↑ 92.31 ↑	97.56↑ 97.82 ↑	98.87↑ 98.90↑	73.52↑ 76.50 ↑	69.63↑ 73.96↑	89.62↑ 90.54 ↑	93.61↑ 94.21 ↑		92.85↑ 93.86 ↑	79.21↑ 83.32 ↑	93.21↑ 93.86↑	97.86↑ 97.95↑	

Experiments on Self-Supervised Contrastive Learning

METHOD			ImageN	Net-100				#Arch					
	100 epochs			400 epochs			3	300 epochs			00 epocl	"Then.	
	k-NN	Top-1	Top-5	k-NN	Top-1	Top-5	k-NN	Top-1	Top-5	k-NN	Top-1	Top-5	
SimCLR(Chen et al., 2020) BYOL(Grill et al., 2020) CMC(Tian et al., 2020a) PCL(Li et al., 2021) SwAV(Caron et al., 2020) HCL(Robinson et al., 2021) MetAug(Li et al., 2022) DASL (cluster-free) DASL (cluster-used)	55.9 56.3 57.7 55.9 58.2 55.9 59.2 <u>60.5</u> 61.5	61.3 65.5 60.2 60.2 61.0 60.8 61.1 65.2 67.3	78.6 77.8 79.2 77.2 79.4 79.3 79.4 79.8 80.1	70.6 69.2 71.6 71.5 72.1 70.2 69.8 73.5 74.2	75.2 73.2 73.6 76.1 75.8 74.6 75.6 76.6 76.6 77.5	92.1 90.1 92.1 93.2 92.9 92.3 93.2 93.2 93.9 94.5	64.2 66.9 63.2 59.5 65.4 64.2 65.4 <u>68.3</u> 69.1	67.4 71.2 68.2 66.5 73.1 71.2 74.2 72.7 74.8	87.9 90.5 87.2 86.7 91.2 91.2 91.1 <u>91.9</u> 92.4	66.1 67.2 67.2 62.2 65.7 67.2 67.8 <u>68.2</u> 69.1	69.3 73.2 71.2 70.5 75.3 71.7 76.0 76.7 76.6	89.6 91.5 89.9 90.5 91.5 90.7 92.9 92.9 92.9 93.2	Res.50 Res.50 Res.50 Res.50 Res.50 Res.50 Res.50 Res.50 Res.50
BYOL(Grill et al., 2020) SwAV(Caron et al., 2020) DINO(Caron et al., 2021) iBOT(Zhou et al., 2022b) PQCL(Zhang et al., 2023) DASL (cluster-free) DASL (cluster-used)	57.2 60.1 61.5 61.5 62.3 <u>62.5</u> 63.4	62.8 62.5 67.5 68.2 66.7 69.5 69.7	77.9 80.5 81.8 82.2 82.5 81.1 82.8	72.1 74.2 78.2 77.5 78.5 78.4 79.3	76.9 77.8 79.2 78.5 79.5 80.1 82.3	93.8 94.2 95.5 95.2 94.8 96.1 96.8	66.6 64.7 72.3 71.5 70.8 71.5 72.9	71.4 71.8 76.1 75.0 76.5 77.8 76.8	91.2 91.1 92.4 91.9 91.9 92.7 93.5	68.2 69.2 76.2 75.2 78.3 76.2 77.9	74.2 75.6 78.2 76.0 76.9 79.2 79.9	92.8 91.8 94.2 92.6 93.0 94.5 96.3	ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16

Acknowledgement

M.S. was supported by JST CREST Grant Number JPMJCR18A2 and a grant from Apple, Inc. Any views, opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and should not be interpreted as reflecting the views, policies or position, either expressed or implied, of Apple Inc. J.Y. was supported by the National Science Fund of China under Grant No. 62361166670.

