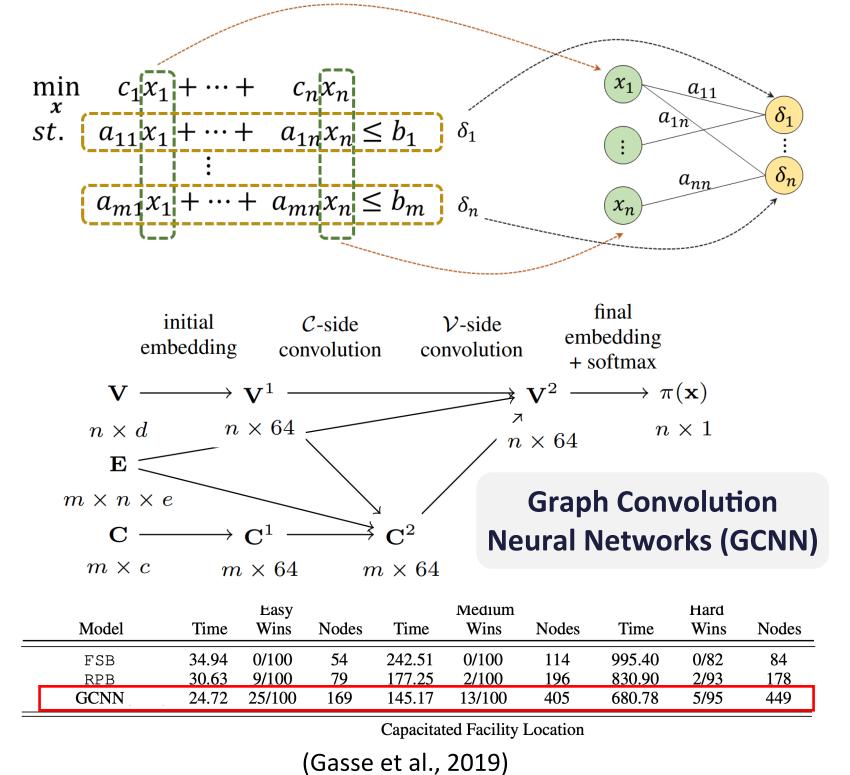






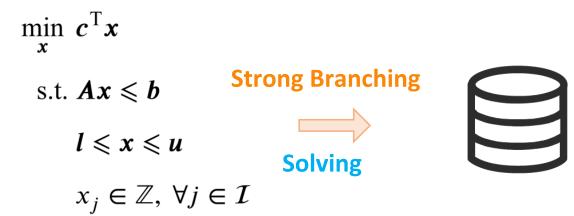
# Machine Learning can accelerate Mixed Integer Linear Programming (MILP) solving.



Solving Time is decreased by ~150 seconds for *Hard* level MILP instances.

## Collecting experts for Imitation Learning is computationally intensive and time-consuming.

**Expert Data Collection: Solving training MILP instances with Strong Branching (expert strategy).** 



## Collecting 100k expert samples (*Easy* Level) instances requires

- > 26.65 hours for Set Covering Problem
- > 12.48 hours for Combinatorial Auction Problem
- > **84.79 hours for** Capacitated Facility Location Problem
- > 53.45 hours for Maximum Independent Set Problem

As the complexity of MILPs scales up in practical



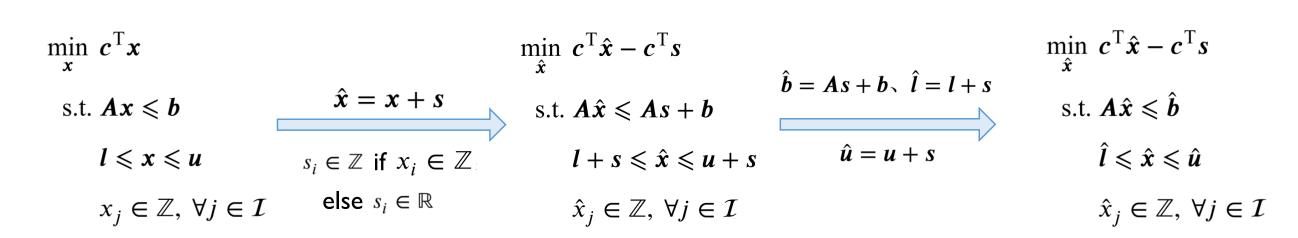
#### The expert data collecting time dramatically increases 22

# CAMBranch: Contrastive Learning with Augmented MILPs for Branching

Jiacheng Lin\*[1], Meng Xu\*[2], Zhihua Xiong[2], Huangang Wang\*[2]
[1] University of Illinois Urbana-Champaign [2] Tsinghua University

\* Equal Contribution + Corresponding Author

#### **Our Solution: Augmented MILPs**



#### **Characteristics of Augmented MILPs (AMILPs)**

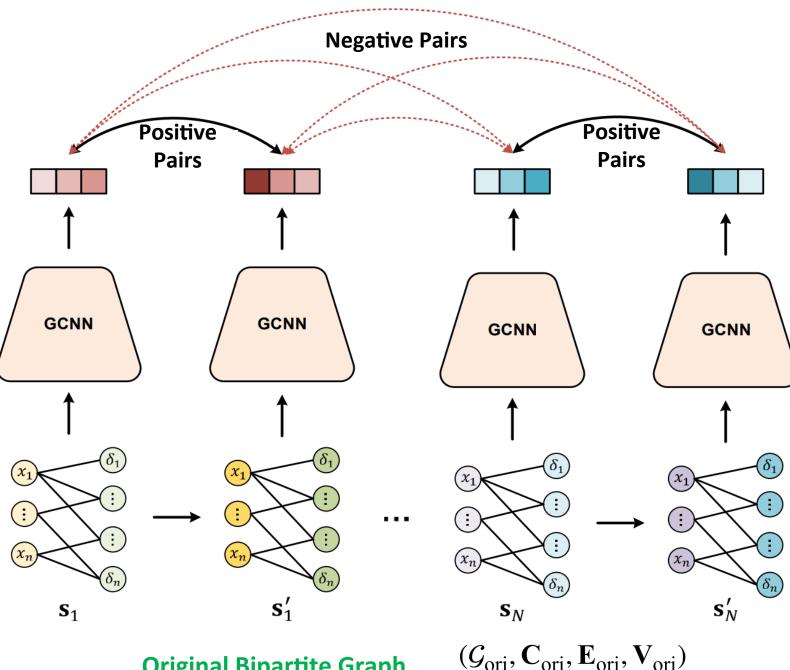
- ➤ Each MILP can generate multiple AMILPs
- ➢ Generated AMILPs share identical Variable Selection Decisions to its original MILPs



#### Generate labeled expert data without solving AMILPs

Next, by lemmas and theorems, obtain AMILP's Bipartite Graph features which will be fed into the GCNN for feature extraction.

#### Leveraging Contrastive Learning between MILPs and AMILPs



 $\begin{array}{ll} \textbf{Original Bipartite Graph} & (\mathcal{G}_{ori}, \mathbf{C}_{ori}, \mathbf{E}_{ori}, \mathbf{V}_{ori}) \\ \textbf{Augmented Bipartite Graph} & (\mathcal{G}_{aug}, \mathbf{C}_{aug}, \mathbf{E}_{aug}, \mathbf{V}_{aug}) \end{array}$ 

 $c_{\text{ori}}^{\mathcal{G}} = \text{MLP}(\text{Concat}(\text{MaxPool}(\mathbf{C}'_{\text{ori}}), \text{MeanPool}(\mathbf{C}'_{\text{ori}})))$   $v_{\text{ori}}^{\mathcal{G}} = \text{MLP}(\text{Concat}(\text{MaxPool}(\mathbf{V}'_{\text{ori}}), \text{MeanPool}(\mathbf{V}'_{\text{ori}})))$   $c_{\text{aug}}^{\mathcal{G}} = \text{MLP}(\text{Concat}(\text{MaxPool}(\mathbf{C}'_{\text{aug}}), \text{MeanPool}(\mathbf{C}'_{\text{aug}})))$   $v_{\text{aug}}^{\mathcal{G}} = \text{MLP}(\text{Concat}(\text{MaxPool}(\mathbf{V}'_{\text{aug}}), \text{MeanPool}(\mathbf{V}'_{\text{aug}})))$ Variable and Constraint Node Pooling

 $\mathbf{g}_{\text{ori}} = \text{MLP}(\text{Concat}(\mathbf{c}_{\text{ori}}^{\mathcal{G}}, \mathbf{v}_{\text{ori}}^{\mathcal{G}}))$   $\mathbf{g}_{\text{aug}} = \text{MLP}(\text{Concat}(\mathbf{c}_{\text{aug}}^{\mathcal{G}}, \mathbf{v}_{\text{aug}}^{\mathcal{G}}))$ 

Variable and Constraint Node Feature Merging







Hard

#### **Loss function**

**1. Imitation Learning**  $\mathcal{L}_{\sup} = -\frac{1}{N} \sum_{(\mathbf{s}_i, \mathbf{a}_i^*) \in D} \log \pi_{\theta}(\mathbf{a}_i^* | \mathbf{s}_i)$ 

**2. Contrastive Learning**  $\mathcal{L}^{(\text{infoNCE})} = -\sum_{i=1}^{n_{\text{batch}}} \log \left( \frac{\exp \left( \tilde{\mathbf{g}}_{\text{ori}}^{\text{T}}(i) \cdot \tilde{\mathbf{g}}_{\text{aug}}(i) \right)}{\sum_{i=1}^{n_{\text{batch}}} \exp \left( \tilde{\mathbf{g}}_{\text{ori}}^{\text{T}}(i) \cdot \tilde{\mathbf{g}}_{\text{aug}}(j) \right)} \right)$ 

3. Consistency Loss  $\mathcal{L}^{(Aux)} = \sum_{i=1}^{n_{batch}} (P_{ori}(i) - P_{aug}(i))^2$ 

Easy

The final loss function is  $\mathcal{L} = \mathcal{L}^{(\text{sup})} + \lambda_1 \mathcal{L}^{(\text{infoNCE})} + \lambda_2 \mathcal{L}^{(\text{Aux})}$ 

Medium

#### **Experimental Results**

| Model           | Time                          | Wins   | Nodes | Time    | Wins   | Nodes | Time    | Wins   | Nodes |  |  |
|-----------------|-------------------------------|--------|-------|---------|--------|-------|---------|--------|-------|--|--|
| FSB             | 4.71                          | 0/100  | 10    | 97.6    | 0/100  | 90    | 1396.62 | 0/64   | 381   |  |  |
| RPB             | 2.61                          | 1/100  | 21    | 19.68   | 2/100  | 713   | 142.52  | 29/100 | 8971  |  |  |
| GCNN            | 1.96                          | 43/100 | 87    | 11.30   | 74/100 | 695   | 158.81  | 19/94  | 12089 |  |  |
| GCNN (10%)      | 1.99                          | 44/100 | 102   | 12.38   | 16/100 | 787   | 144.40  | 10/100 | 10031 |  |  |
| CAMBranch (10%) | 2.03                          | 12/100 | 91    | 12.68   | 8/100  | 758   | 131.79  | 42/100 | 9074  |  |  |
|                 | Combinatorial Auction         |        |       |         |        |       |         |        |       |  |  |
| FSB             | 34.94                         | 0/100  | 54    | 242.51  | 0/100  | 114   | 995.40  | 0/82   | 84    |  |  |
| RPB             | 30.63                         | 9/100  | 79    | 177.25  | 2/100  | 196   | 830.90  | 2/93   | 178   |  |  |
| GCNN            | 24.72                         | 25/100 | 169   | 145.17  | 13/100 | 405   | 680.78  | 5/95   | 449   |  |  |
| GCNN (10%)      | 26.30                         | 15/100 | 180   | 124.49  | 48/100 | 406   | 672.88  | 11/95  | 423   |  |  |
| CAMBranch (10%) | 24.91                         | 50/100 | 183   | 124.36  | 37/100 | 390   | 470.83  | 77/95  | 428   |  |  |
|                 | Capacitated Facility Location |        |       |         |        |       |         |        |       |  |  |
| FSB             | 28.85                         | 10/100 | 19    | 1219.15 | 0/62   | 81    | 3600.00 | _      | _     |  |  |
| RPB             | 10.73                         | 11/100 | 78    | 133.30  | 5/100  | 2917  | 965.67  | 10/40  | 17019 |  |  |
| GCNN            | 7.17                          | 11/100 | 90    | 164.51  | 4/99   | 5041  | 1020.58 | 0/17   | 21925 |  |  |
| GCNN (10%)      | 7.18                          | 26/100 | 103   | 122.65  | 8/89   | 3711  | 695.96  | 2/20   | 17034 |  |  |
| CAMBranch (10%) | 6.92                          | 42/100 | 90    | 61.51   | 83/100 | 1479  | 496.86  | 33/40  | 10828 |  |  |

Maximum Independent Set

### Our CAMBranch, trained with only 10% of the full dataset outperforms GCNN trained with full data.

Table 3: The results of evaluating the instance-solving performance for the Combinatorial Auction problem by utilizing the complete training dataset. Bold numbers denote the best results.

|   | <u> </u>                            |                     | •                      |                  |                       |                        |                   |                         |                         |                     |
|---|-------------------------------------|---------------------|------------------------|------------------|-----------------------|------------------------|-------------------|-------------------------|-------------------------|---------------------|
|   |                                     | Easy                |                        |                  | Medium                |                        |                   | Hard                    |                         |                     |
|   | Model                               | Time                | Wins                   | Nodes            | Time                  | Wins                   | Nodes             | Time                    | Wins                    | Nodes               |
| • | GCNN (10%)<br>GCNN (100%)           | 1.99<br>1.96        | 2/100<br>4/100         | 102<br><b>87</b> | 12.38<br>11.30        | 3/100<br>7/100         | 787<br>695        | 144.40<br>158.81        | 2/100<br>4/94           | 10031<br>12089      |
|   | CAMBranch (10%)<br>CAMBranch (100%) | 2.03<br><b>1.73</b> | 1/100<br><b>93/100</b> | 91<br>88         | 12.68<br><b>10.04</b> | 2/100<br><b>88/100</b> | 758<br><b>690</b> | 131.79<br><b>109.96</b> | 11/100<br><b>83/100</b> | 9074<br><b>8260</b> |

CAMBranch is not limited to data-limited scenarios, which also serves a valuable tool for data argumentation with full dataset.