CAMBranch: Contrastive Learning with Augmented MILPs for Branching

International Conference On Learning Representations
[1] University of Illinois Urbana-Champaign [2] Tsinghua University Equal Contribution

Corresponding Author
Our Solution: Augmented MILPs

$\min _{x} \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$		$\min _{\hat{x}} c^{\mathrm{T}} \hat{\boldsymbol{x}}-c^{\mathrm{T}} s$		$\min _{\hat{x}} \boldsymbol{c}^{\mathrm{T}} \hat{\boldsymbol{x}}-\boldsymbol{c}^{\mathrm{T}} \boldsymbol{s}$
s.t. $\boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b}$	$\hat{x}=x+s$	s.t. $\boldsymbol{A} \hat{\boldsymbol{x}} \leqslant \boldsymbol{A s}+\boldsymbol{b}$	$\hat{b}=\boldsymbol{A} s+\boldsymbol{b}, ~ \hat{l}=l+s$	s.t. $\boldsymbol{A} \hat{\boldsymbol{x}} \leqslant \hat{\boldsymbol{b}}$
$l \leqslant x \leqslant u$	$s_{i} \in \mathbb{Z}$ if $x_{i} \in \mathbb{Z}$	$l+s \leqslant \hat{x} \leqslant u+s$	$\hat{u}=u+s$	$\hat{\imath} \leqslant \hat{x} \leqslant \hat{u}$
$x_{j} \in \mathbb{Z}, \forall j \in \mathcal{I}$	else $s_{i} \in \mathbb{R}$	$\hat{x}_{j} \in \mathbb{Z}, \forall j \in \mathcal{I}$		$\hat{x}_{j} \in \mathbb{Z}, \forall j \in \mathcal{I}$

Characteristics of Augmented MILPs (AMILPs)

$>$ Each MILP can generate multiple AMILPs
> Generated AMILPs share identical Variable Selection Decisions to its original MILPs

Generate labeled expert data without solving AMILPs \approx

Next, by lemmas and theorems, obtain AMIILP's Bipartite Graph features which will be fed into the GCNN for feature extraction.

Leveraging Contrastive Learning between MILPs and AMILPs

Original Bipartite Graph $\quad\left(\mathcal{C}_{\text {ori }}, \mathbf{C}_{\text {ori }}, \mathbf{E}_{\text {ori }}, \mathbf{V}_{\text {ori }}\right)$ Augmented Bipartite Graph $\left(\mathcal{G}_{\text {aug }}, \mathbf{C}_{\text {aug }}, \mathbf{E}_{\text {aug }}, \mathbf{V}_{\text {aug }}\right)$

[^0]$g_{\text {ori }}=\operatorname{MLP}\left(\right.$ Concat $\left.\left(C_{\text {ori }}^{c}, v_{\text {ori }}^{c}\right)\right)$
$g_{\text {aug }}=\operatorname{MLP}\left(\right.$ Concat $\left.\left(C_{\text {aug }}^{c}, v_{\text {augs }}^{c}\right)\right)$
Variable and Constraint Node

Loss function

1. Imitation Learning	$\mathcal{L}_{\text {sup }}=-\frac{1}{N} \sum_{\left(\mathbf{s}_{\left.\mathbf{i}, \mathbf{a}_{i}^{*}\right) \in D} \log \pi_{\theta}\left(\mathbf{a}_{i}^{*} \mid \mathbf{s}_{i}\right)\right.}$
2. Contrastive Learning	
3. Consistency Loss	$\mathcal{L}^{(\mathrm{Aux})}=\sum_{i=1}^{n_{\text {bacth }}}\left(\boldsymbol{P}_{\text {ori }}(i)-\boldsymbol{P}_{\text {aug }}(i)\right)^{2}$

The final loss function is $\mathcal{L}=\mathcal{L}^{(\text {sup })}+\lambda_{1} \mathcal{L}^{(\text {infoNCE })}+\lambda_{2} \mathcal{L}^{\text {(Aux) }}$

Experimental Results

Model	Time	Easy Wins	Nodes	Time	$\underset{\substack{\text { Medium } \\ \text { Wins }}}{ }$	Nodes	Time	$\begin{aligned} & \begin{array}{l} \text { Hard } \\ \text { Wins } \end{array} \end{aligned}$	Nodes
FSB	4.71	0/100	10	97.6	0/100	90	1396.62	0/64	381
RPb	2.61	1/100	21	19.68	2/100	713	142.52	29/100	8971
GCNN	1.96	43/100	87	11.30	74/100	695	158.81	$19 / 94$	12089
GCNN (10\%)	1.99	44/100	102	12.38	16/100	787	144.40	10/100	10031
CAMBranch (10\%)	2.03	12/100	91	12.68	8/100	758	131.79	42/100	9074
Combinatorial Auction									
FSB	34.94	0/100	54	242.51	0/100	114	995.40	0/82	84
RPb	30.63	9/100	79	177.25	2/100	196	830.90	$2 / 93$	178
GCNN	24.72	25/100	169	145.17	13/100	405	680.78	5/95	449
GCNN (10\%)	26.30	15/100	180	124.49	48/100	406	672.88	11195	423
CAMBranch (10\%)	24.91	50/100	183	124.36	37/100	390	470.83	77795	428
Capacitated Facility Location									
FSB	28.85	10/100	19	1219.15	0/62	81	3600.00		
RPb	10.73	11/100	78	133.30	5/100	2917	965.67	10/40	17019
GCNN	7.17	11/100	90	164.51	$4 / 99$	5041	1020.58	0/17	21925
GCNN (10\%)	7.18	26/100	103	122.65	8/89	3711	695.96	2/20	17034
CAMBranch (10\%)	6.92	42/100	90	61.51	83/100	1479	496.86	33/40	10828

Our CAMBranch, trained with only 10% of the full dataset outperforms GCNN trained with full data.

Table 3: The results of evaluating the instance-solving performance for the Combinatorial Auction problem by utilizing the complete training dataset. Bold numbers denote the best resulis. A. $\begin{array}{lll}\text { Easy } & \text { Medium } & \text { Hard }\end{array}$

Model									
	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
GCNN (10\%)	1.99	2/100	102	12.38	3/100	787	144.40	2/10	10031
GCNN (100\%)	1.96	4/100	87	11.30	7/100	695	158.81	4/9	12089
CAMBranch (10\%)	2.03	1/100	91	12.68	2/100	758	131.79	11/100	9074
CAMBranch (100\%)	1.73	93/100	88	10.04	88/100	690	109.96	83/100	8260

CAMBranch is not limited to data-limited scenarios, which also serves a valuable tool for data argumentation with full dataset.

[^0]: $c_{\text {ori }}^{c}=\operatorname{MLP}\left(\right.$ Concat (MaxPool($\mathbf{C o r}_{\text {or }}^{\prime}$) , MeanPool($\left(\right.$ orir $\left.\left._{\prime}^{\prime}\right)\right)$) $v_{\text {ori }}^{c}=\operatorname{MLP}\left(\right.$ Concat(MaxPool $\left(V_{\text {ori }}^{\prime}\right)$ MeanPool $\left.\left.\left(V_{\text {ori }}^{\prime}\right)\right)\right)$ $c_{\text {aug }}^{c}=\operatorname{MLP}\left(\right.$ Concat (MaxPool($\left(\right.$ Caug $\left._{\text {ang }}^{\prime}\right)$, MeanPool $\left(\right.$ Caug $\left.\left._{\text {aug }}^{\prime}\right)\right)$ $v_{\text {aug }}^{c}=\operatorname{MLP}\left(\right.$ Concat(MaxPool $\left(\right.$ Vaug $\left._{\text {aug }}^{\prime}\right)$ MeanPool (augg $\left.\left._{\prime}^{\prime}\right)\right)$ Variable and Constraint Node Pooling

