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•  Use local 𝐼(𝒛!; 𝒛"|𝑠) or global 𝐼(𝒛!; 𝒛")?
• The client classification task is what separates them

• When we have label skew, the client 
classification task is beneficial
• We prove that it maximizes a lower bound to the 

mutual information between the representations and 
the unknown ground truth label

• When we have covariate shift, it can be 
detrimental
• It encourages storing in the representations 

irrelevant, for the downstream task, information
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