

ITRANSFORMER: INVERTED TRANSFORMERS ARE EFFECTIVE FOR TIME SERIES FORECASTING

Yong Liu^{*}, Tengge Hu^{*}, Haoran Zhang^{*}, Haixu Wu, Shiyu Wang[§], Lintao Ma[§], Mingsheng Long[⊠] School of Software, BNRist, Tsinghua University, Beijing 100084, China [§]Ant Group, Hangzhou, China {liuyong21,htg21,z-hr20,whx20}@mails.tsinghua.edu.cn {weiming.wsy,lintao.mlt}@antgroup.com,mingsheng@tsinghua.edu.cn

Yong Liu

Tengge Hu

Haoran Zhang

Jianmin Wang

Mingsheng Long

Time Series Forecasting

Wide Applications

Past Observations

Future Time Series

Transformer-based Forecaster

• Emergence of Transformers in TSF

Passionate modifications!

Transformer-based Forecaster

• Emergence of Transformers in TSF

- Passionate modifications!
- Linear models beat Transformers?
 - ARIMA, Holt-Winter ...
 - DLinear, RLinear ...

Zeng et al. Are Transformers Effective for Time Series Forecasting? AAAI 2023.

Time Series Tokens in Transformer

Underlying Risks of Tokenization

- Excessively receptive field
- Inconsistent scale and distribution

Time Series Tokens in Transformer

Underlying Risks of Tokenization

- Excessively local receptive field
- Inconsistent scale and distribution
- Variate-mixed representations
- Inherent lags between variates...

Motivation

iTransformer regards multivariate series **invertedly** without any modular modification

iTransformer

Encoder-only Arch.

$$\mathbf{h}_{n}^{0} = \operatorname{Embedding}(\mathbf{X}_{:,n}),$$

 $\mathbf{H}^{l+1} = \operatorname{TrmBlock}(\mathbf{H}^{l}),$
 $\hat{\mathbf{Y}}_{:,n} = \operatorname{Projection}(\mathbf{h}_{n}^{L}).$

- Time series of individual variate as the Variate Token
- LayerNorm and FFN for Variate-centric Representations
- Multivariate Correlations are captured by self-attention

Transformer Modules

Layer normalization (within Variate Tokens)

$$\text{LayerNorm}(\mathbf{H}) = \left\{ \frac{\mathbf{h}_n - \text{Mean}(\mathbf{h}_n)}{\sqrt{\text{Var}(\mathbf{h}_n)}} \middle| n = 1, \cdots, N \right\}$$

Mitigate variate discrepancies in scaling and distribution Instead, time-unaligned events are merged and the obtained Temporal Tokens can be over-smoothed

Transformer Modules

Layer normalization (within Variate Tokens)

$$\text{LayerNorm}(\mathbf{H}) = \left\{ \frac{\mathbf{h}_n - \text{Mean}(\mathbf{h}_n)}{\sqrt{\text{Var}(\mathbf{h}_n)}} \middle| n = 1, \cdots, N \right\}$$

Mitigate variate discrepancies in scaling and distribution Instead, time-unaligned events are merged and the obtained Temporal Tokens can be over-smoothed

Feed-forward network (within Variate Tokens)

- Learns temporal representation
- Describe intrinsic properties of time series
- Transferable representation across variates

Naturally captured: Nonlinear temporal representation under Channel Independence

Module Reflections

Self-attention (among Variate Tokens)

- $\mathbf{H} = \{\mathbf{h}_0, \dots, \mathbf{h}_N\}$ N Variate number
- $\mathbf{q}_i, \mathbf{k}_j\,$ Query and key of Variate Tokens

Module Reflections

Self-attention (among Variate Tokens)

 $\mathbf{H} = \{\mathbf{h}_0, \dots, \mathbf{h}_N\}$ N - Variate number

 $\mathbf{q}_i, \mathbf{k}_j\,$ - Query and key of Variate Tokens

Pearson Correlation coefficients:

$$\rho_{xy} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}$$

$$\quad \longleftrightarrow \quad$$

Elements of Attention:

$$\mathbf{A}_{i,j} = (\mathbf{Q}\mathbf{K}^{ op}/\sqrt{d_k})_{i,j} \propto \mathbf{q}_i^{ op} \mathbf{k}_j$$

 $\mathbf{A} \in \mathbb{R}^{N imes N_{-}}$ Multivariate Correlations

Highly correlated tokens will be more weighted with the Value

Softmax $\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}}\right)\mathbf{V}$

Time Series Forecasting

Averaged MSE (4 prediction lengths)

Achieve state-of-the-art on MTSF

Excel at high-dimensional series: ECL, Traffic, Solar...

7 Benchmark (13 Datasets, 52 Prediction Settings)

Models	iTransformer (Ours)		RLinear (2023)		PatchTST (2023)		Crossformer (2023)		TiDE (2023)		TimesNet (2023)		DLinear (2023)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ECL	0.178	0.270	0.219	0.298	0.205	0.290	0.244	0.334	0.251	0.344	0.192	0.295	0.212	0.300
ETT (Avg)	0.383	0.399	0.380	0.392	0.381	0.397	0.685	0.578	0.482	0.470	0.391	0.404	0.442	0.444
Exchange	<u>0.360</u>	0.403	0.378	0.417	0.367	0.404	0.940	0.707	0.370	0.413	0.416	0.443	0.354	0.414
Traffic	0.428	0.282	0.626	0.378	0.481	<u>0.304</u>	0.550	<u>0.304</u>	0.760	0.473	0.620	0.336	0.625	0.383
Weather	0.258	0.278	0.272	0.291	0.259	0.281	0.259	0.315	0.271	0.320	0.259	0.287	0.265	0.317
Solar-Energy	0.233	0.262	0.369	0.356	0.270	0.307	0.641	0.639	0.347	0.417	0.301	0.319	0.330	0.401
PEMS (Avg)	0.119	0.218	0.514	0.482	0.217	0.305	0.220	0.304	0.375	0.440	0.148	0.246	0.320	0.394

Market Datasets (Server Load Prediction of Ant Group)

Models	S iTransformer (Ours)		RLinear (2023)		PatchTST (2023)		Crossformer (2023)		TiDE (2023)		TimesNet (2023)		DLinear (2023)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Merchant	0.072	0.147	0.152	0.247	0.084	<u>0.171</u>	0.117	0.181	0.187	0.289	0.093	0.184	0.110	0.206
Wealth	0.345	0.289	0.585	0.461	0.394	0.326	0.429	0.288	0.595	0.481	0.360	0.318	0.501	0.412
Finance	0.184	0.216	0.395	0.336	0.231	0.248	5.333	0.618	0.987	0.442	0.516	0.308	0.765	0.372
Terminal	0.065	0.150	0.180	0.286	0.077	0.179	0.071	0.162	0.216	0.311	0.080	0.179	0.106	0.210
Payment	0.072	0.144	0.143	0.245	0.084	<u>0.174</u>	0.207	0.179	0.208	0.278	0.105	0.182	0.116	0.200
Customer	0.094	0.150	0.214	0.261	0.118	<u>0.180</u>	0.309	0.194	0.308	0.307	0.142	0.191	0.184	0.219

Framework Generality

Models		Transformer (2017)		Reformer (2020)		Info (20	rmer 21)	Flowformer (2022)		Flashformer (2022)	
Metric		MSE	MAE								
ECL	Original + Inverted	0.277 0.178	0.372 0.270	0.338 0.208	0.422 0.301	0.311 0.216	0.397 0.311	0.267 0.210	0.359 0.293	0.285 0.206	0.377 0.291
	Promotion	35.6%	27.4%	38.4%	28.7%	30.5%	21.6%	21.3%	18.6%	27.8%	22.9%
Traffic	Original + Inverted	0.665 0.428	0.363 0.282	0.741 0.647	0.422 0.370	0.764 0.662	0.416 0.380	0.750 0.524	0.421 0.355	0.658 0.492	0.356 0.333
	Promotion	35.6%	22.3%	12.7%	12.3%	13.3%	8.6%	30.1%	15.6%	25.2%	6.4%
Weather	Original + Inverted	0.657 0.258	0.572 0.279	0.803 0.248	0.656 0.292	0.634 0.271	0.548 0.330	0.286 0.266	0.308 0.285	0.659 0.262	0.574 0.282
	Promotion	60.2%	50.8%	69.2%	55.5%	57.3%	39.8%	7.2%	7.7%	60.2%	50.8%

Prediction Accuracy Transformer ↑ 38.9% Reformer ↑ 36.1% Informer ↑ 28.5% Flowformer 16.8%

Flashformer

↑ 32.2%

- Inverting can consistently improve various Transformers
- Take advantage of booming efficient attention mechanisms

Market Dataset: each variate represents the monitored series of a service interface of a kind

Market Dataset: each variate represents the monitored series of a service interface of a kind

- Partitions in the learned attention map, indicating the grouping of variates
- The learned attention map reveals the correlations between the variates

Solar-Energy Dataset: distinct multivariate correlations in the lookback and future series

Future Correlations

Calculated from raw series

Lookback Correlations

$$\rho_{xy} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}$$

Solar-Energy Dataset: distinct variate correlations in the lookback and future series

Attention map can reflect the correlation between the variates

In the shallow layer, the map share similarities to the correlations of lookback series

Lookback Correlations

$$o_{xy} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}$$

$$\mathbf{A}_{i,j} = (\mathbf{Q}\mathbf{K}^{ op}/\sqrt{d_k})_{i,j} \propto \mathbf{q}_i^{ op} \mathbf{k}$$

Learned by iTransformer

Solar-Energy Dataset: distinct variate correlations in the lookback and future series

$$\rho_{xy} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}$$

Attention map reflect the correlation between the variates

In the deep layer, the map share similarities to the correlations of future series

$$\mathbf{A}_{i,j} = (\mathbf{Q}\mathbf{K}^{ op}/\sqrt{d_k})_{i,j} \propto \mathbf{q}_i^{ op} \mathbf{k}_j$$

Future Correlations

Score Map of Layer L

Learned by iTransformer

Solar-Energy Dataset: distinct variate correlations in the lookback and future series

Attention scores reflect the correlation between the variates

Inverting empowers

- Attention: Interpretable variate correlating
- FFN & LN: Encoding Variate Tokens and

decoding them for the prediction

Prolonged Lookback Length

Previous work found that Transformer-based forecasters does not necessarily improve with enlarged lookback whidow

Performance of iTransformer is generally improving with more lookback observations

Nie et al. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. ICLR, 2023.

Representation Analysis

Previous work demonstrated that time series forecasting, as a

low-level generative task, prefers the higher CKA similarity

Inverting learns favored series representations and thus achieves more accurate predictions.

TimesNet: Temporal 2d-variation Modeling for General Time Series Analysis. ICLR, 2023.

Variate Generalization

Based on the independent embedding of Variate Tokens

iTransformer can forecast with arbitrary numbers of variates during inference

Similar to Channel Independence

iTransformers can be trained on partial variables and generalize well on unseen variates

Nie et al. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. ICLR, 2023.

Efficient Training

Memory Footprint 15 4 0.4 60% 100%80% - ECL Traffic Solar-Energy 3 BSW 0.3 - ECL ---- Traffic ---- Solar-Energy GB 2 0.2 0.1 100% 80% 60% 40% 20% 100% 80% 60% 40% 20% Sample Ratio Sample Ratio

Performance

Based on the Variate Generalization Capability

We proposed an Efficient Training Strategy that trains sampled variates in each batch

Performance remains stable while memory footprints can be cut off significantly

- iTransformer exceeds other Transformers in datasets with a small number of variates
- Via Efficient Training, iTransformer shows strength in both Performance/Efficiency

Thank You!

liuyong21@mails.tsinghua.edu.cn

Code and datasets are available at https://github.com/thuml/iTransformer