
Introduction

Questions: 
Can we design an optimal regularization of feature mapping to 
fully exploit the benefit of feature learning and demonstrate its 
improvement over simpler models like ridge regression? 

• Most papers on feature learning only focus on classification 
problems .

• Many works on feature learning of regression problems aren’t 
enough to fully understand feature learning.
Ø  They focus on implicit regularization, which isn’t 

necessary optimal.
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Multi-output Linear Regression:
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Proposed Criterion for 𝑾:
We established direct estimator of its predictive risk: 

This can be seen as an extension of Mallows’ Cp and WAIC for Ridge regression.
Remark
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We estimate 𝑦(!) by two-layer linear neural network as

Degrees of Freedom

Full potential of feature learning in regression problems

Main Result1: Selecting 𝑊 with R(W) 
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Optimal criterion for feature learning of two-layer linear 
neural network in high dimensional interpolation regime 

Keita Suzuki1, Taiji Suzuki2,3 1Preferred Networks.Inc,  2The University of Tokyo, 3RIKEN AIP

Comparison with Ridge regression

For 𝑘 ≤ 𝑛, under some conditions, it holds with 
high probability, 
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Feature learning with 𝑅 𝑊  outperforms ridge regression in the 4 cases: 
1. When eigenvalues of Σ! decreases slowly  
2. When 𝑥 and 𝛽∗ are misaligned
3. When tail eigenvalues of Σ! are large
4. When 𝑦($) is large 
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Ex. (When eigenvalues of Σ! decreases slowly )
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Feature learning with 𝑹 𝑾

Ridge regression  

Qualitative analysis

𝑙& regularization with feature 
learning decreases variance 
without   deteriorating bias. 

Feature learning with 𝑹(𝑾) Ridge regression

: Distribution of 𝛽∗

: Regularization

Numerical experiments

Predictive risk of Two-layer 
NN, ridge regression and 
Bayes-optimal estimator.

Objective:

For some 𝑡 > 1 and 𝛿 = 𝑜(1), under some conditions, it 
holds that with high probability, 
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Main Result2: Bayes risk optimality

Suppose Σ' is positive definite. Then under some conditions, it 
holds that with high probability  
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Theorem 3

Eigenvalues of Σ.

𝑘

Regularization

• 𝑅 𝑊  plays a role of estimator of predictive risk.
• Minimizing 𝑅 𝑊  can lead to generalization.

Insight from Theorem1

Q. How small 𝑅 𝑊 − 𝜎0 can be? (Theorem2)

We can obtain  Bayes Estimator as 
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Evaluating 𝑅(𝑋, 𝜎, 𝛽-) yields the lower bound.

Bayes Risk

Proof Outline 

𝑾 selected by 𝑹 𝑾  can achieve lower bound! 
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• Feature learning  with 𝑅 𝑊  can find 
informative directions of Σ!  .

• Coordinate transformation with such 𝑊 
can change the problem into like a 
kernel regime. 

Normal 𝑙& regularization regularize 
too strongly in the direction where 
Σ'  has large contribution.

Informative 
direction

Σ. = 𝔼 𝑥𝑥&

Σ% =
1
𝑚&

!"#

$

𝛽∗!𝛽∗!&

Lower bound of optimal Bayes risk
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Average of predictive risk for each output 
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Remark: The evaluation in Theorem1 isn’t uniform about 𝑊. 

Remark: If 𝑊 = 𝐼, this estimator is equal to ridge regression.


