Optimal criterion for feature learning of two-layer linear neural network in high dimensional interpolation regime

Keita Suzuki¹, Taiji Suzuki^{2,3}

Introduction

Full potential of feature learning in regression problems

- Most papers on feature learning only focus on classification problems.
- Many works on feature learning of regression problems aren't enough to fully understand feature learning.
 - They focus on implicit regularization, which isn't necessary optimal.

Questions:

Can we design an optimal regularization of feature mapping to fully exploit the benefit of feature learning and demonstrate its improvement over simpler models like ridge regression?

Problem Settings

 $y_i^{(j)} = \beta_{*i}^{\mathsf{T}} x_i + \epsilon_i^{(j)} \quad (i = 1, \dots, n, j = 1, \dots, m)$

Training data: $\left(x_i, \left(y_i^{(1)}, \dots, y_i^{(m)}\right)\right)_{i=1}^n \in \mathbb{R}^d \times \mathbb{R}^m$:

Estimator and Model:

We estimate $y^{(i)}$ by two-layer linear neural network as

 $W^{\mathsf{T}} (WX^{\mathsf{T}}XW^{\mathsf{T}} + n\lambda I_d)^{-1}WX^{\mathsf{T}}y^{(i)}$

<u>Remark</u>: If W = I, this estimator is equal to ridge regression.

Proposed Criterion for W:

We established direct estimator of its predictive risk:

$$R(W) \coloneqq \frac{1}{m} \sum_{i=1}^{m} \min_{\beta} \frac{1}{n} \left\| y^{(i)} - XW^{\mathsf{T}}\beta \right\|^{2} + \lambda \|\beta\|^{2} + \frac{{\sigma'}^{2}}{n} \operatorname{Tr}(WX^{\mathsf{T}}XW^{\mathsf{T}})$$

Remark

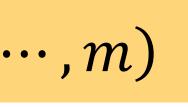
Degrees of Freedom This can be seen as an extension of Mallows' Cp and WAIC for Ridge regression.

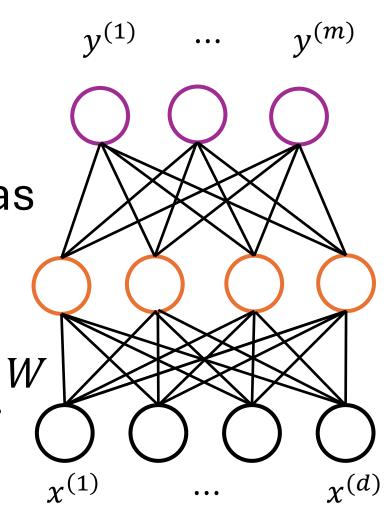
Main Result1: Selecting W with R(W)

Objective:

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{x} \left[\left(x^{\mathsf{T}} \beta_{*i} - x^{\mathsf{T}} W^{\mathsf{T}} \hat{\beta}_{i}(W) \right)^{2} \right] \lesssim$$

Average of predictive risk for each output





 $(WX^{\mathsf{T}}XW^{\mathsf{T}} + n\lambda I_d)^{-1})$

 \leq **Bias** + **Variance**

 $\hat{\beta}_i(W) = (WX^{\mathsf{T}}XW^{\mathsf{T}} + n\lambda I_d)^{-1}WX^{\mathsf{T}}y^{(i)}$

Theorem 1

For some t > 1 and $\delta = o(1)$, under some conditions, it holds that with high probability,

Insight from Theorem1

- R(W) plays a role of estimator of predictive risk.
- Minimizing R(W) can lead to generalization.

Theorem2

Suppose there exist $k \leq n$ such that , for W such that

- Feature learning with R(W) can find informative directions of Σ_{eta} .
- Coordinate transformation with such W can change the problem into like a kernel regime.

Theorem 3

Suppose Σ_{β} is positive definite. Then under some conditions, it holds that with high probability

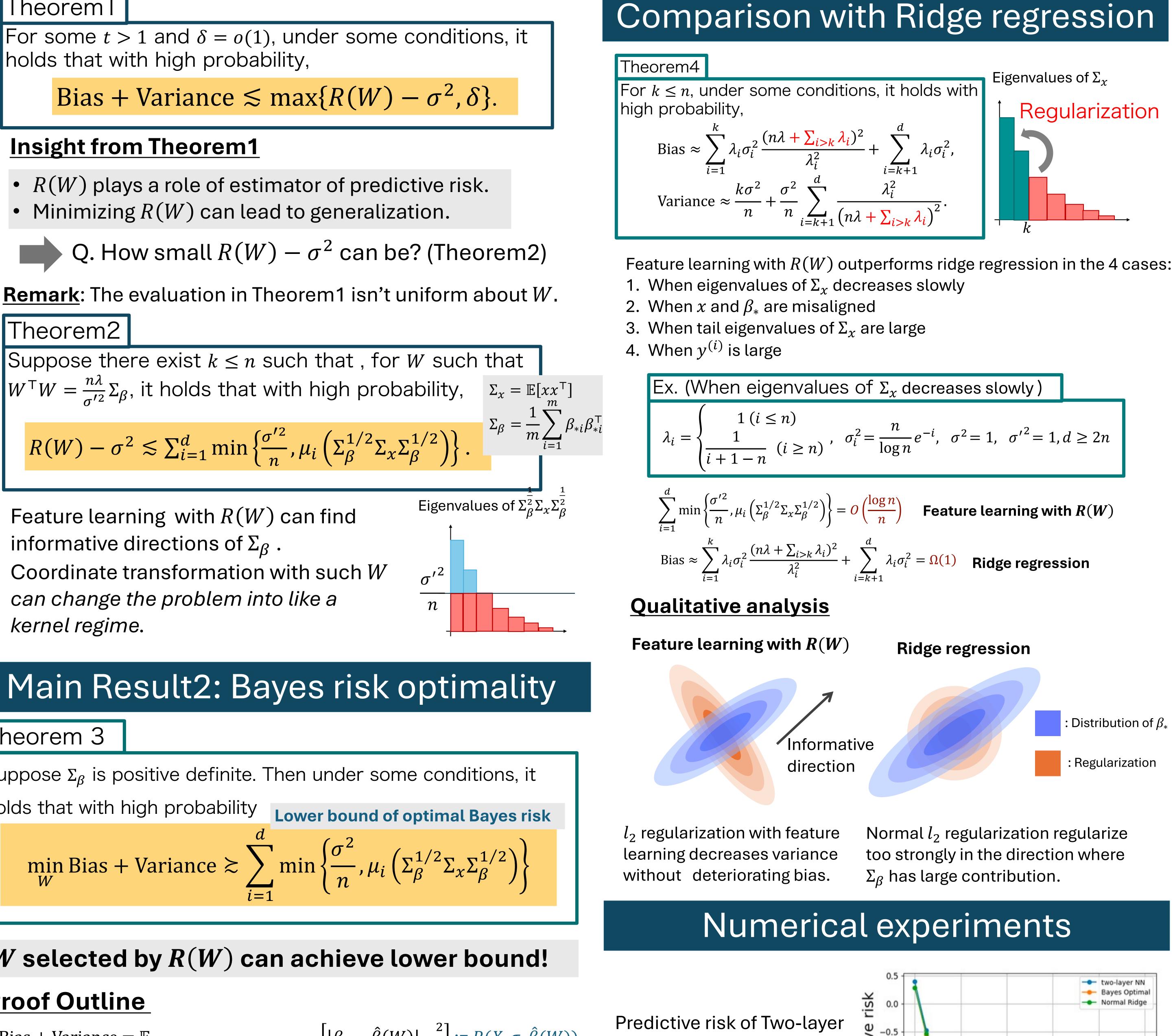
W selected by R(W) can achieve lower bound!

Proof Outline

Bias + Variance = $\mathbb{E}_{\beta_* \sim \mathcal{N}(0, \Sigma_\beta), Y \sim \mathcal{N}(X\beta_*, \sigma^2 I)} \left[|\beta_* - \hat{\beta}(W)|_{\Sigma_X}^2 \right] := R(X, \sigma, \hat{\beta}(W))$ **Bayes Risk** We can **obtain Bayes Estimator** as $\hat{\beta}_B \coloneqq \operatorname{argmin}_{\beta} R(X, \sigma, \beta) = \left(X^{\mathsf{T}} X + \sigma^2 \Sigma_{\beta}^{-1} \right)^{-1} X^{\mathsf{T}} y.$

Can't access directory Evaluating $R(X, \sigma, \beta_B)$ yields the lower bound.

¹Preferred Networks.Inc, ²The University of Tokyo, ³RIKEN AIP



$$\leq n$$

 $\frac{1}{2} (i \geq n)$, $\sigma_i^2 = \frac{n}{\log n} e^{-i}$, $\sigma^2 = 1$, ${\sigma'}^2 = 1$, $d \geq 2n$

$$\frac{1/2}{\beta} \Sigma_{x} \Sigma_{\beta}^{1/2} \Big) \bigg\} = O\left(\frac{\log n}{n}\right) \quad \text{Feature learning with } R(W)$$
$$\frac{\lambda + \sum_{i>k} \lambda_{i})^{2}}{\lambda_{i}^{2}} + \sum_{i=k+1}^{d} \lambda_{i} \sigma_{i}^{2} = \Omega(1) \quad \text{Ridge regression}$$

