Optimal criterion for feature learning of two-layer linear
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Introduction

For some t > 1 and § = o(1), under some conditions, It

Comparison with Ridge regression
Eigenvalues of 2,

For k < n, under some conditions, It holds with

holds that with high probability,

Full potential of feature learning in regression problems
Bias + Variance < max{R(W) — a?%,6}.

high probabillity,

Regularization

* Most papers on feature learning only focus on classification k P R
oroblems . Insight from Theorem1 Bias = ) ;07 ;" :
* Many works on feature learning of regression problems aren’t « R(W) plays a role of estimator of predictive risk. - ro? g2 &
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» They focus on implicit regularization, which isn’t
Y P s » Q. How small R(W) — ¢ can be? (Theorem?2)

necessary optimal. Feature learning with R(W) outperforms ridge regression in the 4 cases:
. Remark: The evaluation in Theorem1 isn’t uniform about W. 1. When eigenvalues of 2 decreases slowly
Questions: 2. When x and (3, are misaligned
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Estimator and Model:

We estimate y(Y) by two-layer linear neural network as N /
WT(WXTXWT + n/lld)"1WXTy(i) /‘ Informative
Remarkc If W — 1. this estimator is equal o ridge regrossion. V. Suppose 2; is positive definite. Then under some conditions, it direction
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Objective: li : [(xTﬁ . — xTWTﬁ-(W))Z] < Bias + Variance
. mi_l X %1 i =

Remark Degrees of Freedom W selected by R(W) can achieve lower bound!
This can be seen as an extension of Mallows’ Cp and WAIC for Ridge regression. 0.5
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Bp = argmingR(X,0,[) = (XTX + 02251)_1XT Y.
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Average of predictive risk for each output
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,éi(W) = (WXTXWT + n,ud)—lWXTy(i) Evaluating R(X, g, ) yields the lower bound. decsrspesd



