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Inverse Constrained Reinforcement Learning (ICRL)

ICRL [4] considers inferring the constraints respected by expert agents
from their demonstrations and learning imitation policies that adhere to
these constraints, until reproducing the expert demonstrations:

• (Forward) Constrained Reinforcement Learning: maximize the
cumulative discounted rewards while respecting constraints

• (Inverse) Constrain Inference: infer the underlying constraints that
best explain the expert behaviors
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Inverse Constrained Reinforcement Learning (ICRL)

Existing ICRL works often neglected underlying uncertainties:
• Aleatoric uncertainty arises from the inherent stochasticity

of environment dynamics -> leading to constraint-violating
behaviors in imitation policies

• Epistemic uncertainty results from the model’s limited
knowledge of Out-of-Distribution (OoD) samples -> affecting
the accuracy of step-wise cost predictions
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Uncertainty-aware ICRL (UAICRL)

To handle both the aleatoric and epistemic uncertainties, we
propose the Uncertainty-aware ICRL, including:

• Policy Optimization with Risk-sensitive Constraints by
modeling the distribution of the cumulative costs

• Data-augmented Constraint Inference with flow-based trajectory
generation for constraint inference from limited demonstrations
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Forward Step: Policy Optimization with Risk-sensitive Constraints

To drive a risk-sensitive policy, the risk incurred by aleatoric
uncertainty can be integrated into the costs distinctly from the
reward optimization.
We formulate the trade-off between rewards and costs as a
constrained optimization problem:

arg max
π

Eπ,pT ,pR,µ0

[ T∑
t=0

(
γt r(st , at) + βγtH[π(at |st)]

)]
s.t. ρα

[ T∑
t=0

γtC(St ,At)
]
≤ ϵ

where H[π(at |st)] refers to the causal entropy [6] and C(·) denotes the random
variable of state-action cost.

Sheng Xu, Guiliang Liu The Chinese University of Hong Kong, Shenzhen
Uncertainty-aware Constraint Inference in Inverse Constrained Reinforcement Learning 5 / 14



Background Methodology Experiments References

Forward Step: Policy Optimization with Risk-sensitive Constraints

To model the distribution of the cumulative costs, we utilize the
distributional Bellman equation [1]:

Z c
θ (s) =

∫
a∈A

π(a|s)
∫

s′∈S
pT (s′|s, a)

∫
c∈C

pC(c|s, a)(bc,γ)#Z c
θ (s

′)dads′dc

where Z c(st)θ =
∑T−t

ι=0 γιCι|S0 = st denotes the variable of discounted cumulative
costs parameterized by θ with N supporting quantiles.

We show that the distributional Bellman equation can capture the key
components for representing the aleatoric uncertainty under the
measure of entropy.
Leveraging the aforementioned policy optimization objective and
distributional estimator, we design the Distributional Lagrange Policy
Optimization (DLPO) algorithm to learn the policy under risk-sensitive
constraints.
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Inverse Step: Constraint Inference with Flow-based Data Augmentation

We utilize the mutual information I(ω; y |x,D) as a measure of epistemic
uncertainty [5]:

• Information gained by model ω when observing true label y for a given input x

• The greater the uncertainty of the model regarding the data, the more
additional information it can obtain.

Intuitively, epistemic uncertainty arises when the constraint model ω is
required to predict the cost of an OoD trajectory τ̄ .
To mitigate the impact of epistemic uncertainty, we need to minimize the
mutual information I(ω; Φ|τ̄ ,D), which can be empirically represented by:

H[p(Φ|τ̄ ,D)]− 1

M
∑

m
H[p(Φ|τ̄ ;ωm)]where ωm ∼ q(ω)

where 1) Φ is a Bernoulli feasibility variable that takes two values {ϕ, ϕ−} such that
p(ϕ|s, α;ω) quantifies to what extent performing action a in the state s is feasible,
and 2) q(ω) denote the dropout distribution.
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Inverse Step: Constraint Inference with Flow-based Data Augmentation

To reduce the impact of epistemic uncertainty as well as the mutual
information I(ω; Φ|τ̄ ,D), we consider expanding the dataset by
generating trajectories, which leads to the data-augmented constraint
inference objective:

1

M
∑

m
EDG

e

[ T∑
t=0

log[p(ϕ|se
t , ae

t ;ωm)]
]
− ED̂G

[ T∑
t=0

log[p(ϕ|ŝt , ât ;ωm)]
]
+ αH[p(Φ|τ̄ ;ωm)]

where DG
e and D̂G are augmented expert and nominal dataset.

We propose a Flow-based Trajectory Generation (FTG) algorithm to
perform conditional generation by training a Continuous Flow Network
(CFlowNet) [2] and then utilize it to generate trajectories based on flows:

• Learning Flow Functions: Train the flow function Fξ(·), which quantifies the
mass of particles passing by, and denser particles indicate a higher probability

• Trajectory Generation: Generate trajectories τG = (s0, a0, . . . , sT , aT ) by
sampling actions based on the scale of Fξ(st , at)
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Experiment Settings

The experiments are based on an ICRL benchmark [3] and extend it to
include stochastic dynamics by incorporating noises into transitions.
The evaluation metrics include:

• Constraint Violation Rate measures the probability that a policy violates
constraint in a trajectory

• Feasible Cumulative Rewards calculate the total rewards obtained by the agent
before violating any constraints

The comparison methods are shown as follows:

Method Continues
Space

Constraint
Optimization

Maximum
Entropy

Aleatoric
Uncertainty

Epistemic
Uncertainty

GACL ✓ × × × ×
B2CL ✓ ✓ × × ×
ICRL ✓ ✓ ✓ × ×

VICRL ✓ ✓ ✓ × ✓
UAICRL-NRS ✓ ✓ ✓ × ✓
UAICRL-NDA ✓ ✓ ✓ ✓ ×

UAICRL ✓ ✓ ✓ ✓ ✓
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Discrete Environment: Gridworld

We construct three Gridworld environments with different constraints.

The evaluation results of different methods in three Gridworlds with the
random rate ps=0.01 and 0.001 are as follows:

ps = 0.01 ps = 0.001
Gridworld
Setting 1

Gridworld
Setting 2

Gridworld
Setting 3

Gridworld
Setting 1

Gridworld
Setting 2

Gridworld
Setting 3

Feasible
Rewards

BC2L 0.451 0.716 0.125 0.647 0.602 0.192
GACL 0.032 0.109 0.000 0.011 0.070 0.000
ICRL 0.244 0.532 0.033 0.356 0.368 0.089

VICRL 0.537 0.310 0.051 0.778 0.610 0.070
UAICRL 0.650 0.683 0.359 0.797 0.739 0.401

Constraint
Violation

Rate

BC2L 0.33 0.19 0.58 0.29 0.27 0.52
GACL 0.43 0.29 0.78 0.67 0.11 0.84
ICRL 0.53 0.33 0.63 0.36 0.27 0.73

VICRL 0.35 0.33 0.45 0.19 0.28 0.53
UAICRL 0.13 0.09 0.34 0.09 0.07 0.38
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Continuous Environment: MuJoCo
We utilize five MuJoCo environments and additionally incorporate
Gaussian noise into the transition function as pT

(
st+1|st , at

)
= f (st , at ) +N (µ, σ)

The constraint violation rate (top) and feasible rewards (bottom) in five
MuJoCo environments during training with stochasticity of N (0, 0.1) are
as follows:
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Visualization Results
The trajectories generated by PPO-Lag and DLPO, with the predicted cost
distributions at the red circle:

The constraint map recovered by MEICRL and UAICRL, along with the trajectories
generated by our FTG:
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Thanks for your listening!

Sheng Xu, Guiliang Liu The Chinese University of Hong Kong, Shenzhen
Uncertainty-aware Constraint Inference in Inverse Constrained Reinforcement Learning 14 / 14


	Background
	Methodology
	Experiments
	References

