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Concept-Based Models

[Koh 2020]
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Current Limitations

* Interpretability

Cannot effectively quantify the intricate relationships between various
concepts and class labels.

* Intervention
Struggle to account for the complex interactions among concepts.

* Performance
Suffer from a trade-off between model performance and interpretability.



Energy-Based Models
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For energy networks, lower energy E indicates better compatibility
(e.g., E(x, ygt) =0).



Our Method (ECBM): Feature Extractor

Given the input x and a candidate label y, the feature
extractor F first compute the features z = F(x).
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ECBM: Class Energy Network E5'*% (x, y)

Measure the compatibility between input x and class
label y.
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ECBM: Concept Energy Network E;°"“?* (x, ¢)

Measure the compatibility between input x and the K
concepts c.
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ECBM: Global Energy Network EJ"*°% (c, y)

Measure the compatibility between the K concepts c and
class label y.
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Training Phase: Minimize Loss

ECBM is trained by minimizing the following total loss
function:
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Inference Phase : Freeze Parameters

To predict ¢ and y given the input x, we freeze the feature
extractor F and the energy network parameters 0.
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Inference Phase: Search Optimum

Search for the optimal prediction of concepts ¢ and the class

label y as follows:

arg mln’\ Yy ['class (m7 y) + )\cﬁconcept (.’B, C) + )\gﬁglobal (C7 y)’ (6)
joint class concept global
B} (x,c,y) = Eg**(z,y) + \Eg (,c) + A\gEg " (c,y). (7)
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Experimental Results

Data
m CUB CelebA AWA2
. Overall Overall Overall

Metric Concept Concept Class | Concept Concept Class | Concept ’ Concept ’ Class
CBM 0.964 0.364  0.759 | 0.837 0.381 0.246 0.979 0.803  0.907
ProbCBM* 0.946 0.360 0.718 0.867 0.473 0.299 | 0.959 0.719  0.880

PCBM . - 0.635 - - - -
CEM 0.965 0.396  0.796 | 0.867 0.457 0.330 0.978 0.796  0.908
ECBM 0.973 0.713 0812 | 0.876 0.478 0.343 0.979 0.854 0912

« Slightly outperform others in terms of concept accuracy.
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Experimental Results

Data
m CUB CelebA AWA2

Metric Concept CO:rfcr:gt Class | Concept C?:rfcr:;lt Class | Concept g;;cr:lplt Class
CBM 0.964 0.364 |0.759 | 0.837 0.381 0.246 0.979 0.803 0.907
ProbCBM* 0.946 0.360 |0.718 0.867 0.473 0.299 | 0.959 0.719 10.880

PCBM . - 0.635 - 3 - -
CEM 0.965 0.396 |0.796 | 0.867 0.457 0.330 0.978 0.796 10.908
ECBM 0.973 0.713 0812 | 0.876 0.478 0.343 0.979 0.854 |0.912

* Slightly outperform others in terms of concept accuracy.

* Successfully capture the interaction (and correlation) among the
concepts.
Significantly outperforms other methods in terms of overall concept accuracy.
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Experimental Results

Data
m CUB CelebA AWA2

Metric Concept ‘ g:rfcr:gt Class || Concept ((I):rfcr:;lt Class | Concept gg:cr:lplt Class
CBM 0.964 0.364 | 0.759 | 0.837 0.381 0.246 0.979 0.803 | 0.907

ProbCBM* 0.946 0.360 | 0.718 0.867 0.473 0.299 | 0.959 0.719 | 0.880
PCBM . - 0.635 . 3 - -
CEM 0.965 0.396 | 0.796 | 0.867 0.457 0.330 0.978 0.796 | 0.908
ECBM 0.973 0.713 | 0.812 | 0.876 0.478 0.343 0.979 0.854 | 0.912

* Slightly outperform others in terms of concept accuracy.

* Successfully capture the interaction (and correlation) among the
concepts.
Significantly outperforms other methods in terms of overall concept accuracy.

* Outperform the state-of-the-art on class accuracy.
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Conditional Interpretation

Conditional class-specific concepts
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Conclusion

* Propose the first general method - ECBM, to unify:
* Concept correction
* Conditional interpretation
* Concept-based prediction

* Under a unified energy formulation, compute arbitrary
conditional probabilities.

 Significantly outperform the state-of-the-art on real-world
datasets.
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