Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations

Xinyue Xu, Yi Qin, Lu Mi, Hao Wang*, Xiaomeng Li*

18 Apr 2024

* Equal advising

Concept-Based Models

After Intervention

Interpretability

Cannot effectively quantify the intricate relationships between various concepts and class labels.

Intervention

Struggle to account for the complex interactions among concepts.

Performance

Suffer from a trade-off between model performance and interpretability.

Energy-Based Models

For energy networks, lower energy E indicates better compatibility (e.g., $E(x, y_{gt}) = 0$).

Our Method (ECBM): Feature Extractor

Given the input x and a candidate label y, the feature extractor F first compute the features z = F(x).

ECBM: Class Energy Network $E_{\theta}^{class}(x, y)$

Measure the compatibility between input *x* and class label *y*.

$$E_{\boldsymbol{\theta}}^{class}(\boldsymbol{x},\boldsymbol{y}) = G_{zu}(\boldsymbol{z},\boldsymbol{u})$$

$$\mathcal{L}_{class}(\boldsymbol{x}, \boldsymbol{y}) = E_{\boldsymbol{\theta}}^{class}(\boldsymbol{x}, \boldsymbol{y}) + \log\bigg(\sum_{m=1}^{M} e^{-E_{\boldsymbol{\theta}}^{class}(\boldsymbol{x}, \boldsymbol{y}_m)}\bigg).$$
(1)

ECBM: Concept Energy Network $E_{\theta}^{concept}(x, c)$

Measure the compatibility between input *x* and the *K* concepts *c*.

$$E_{\boldsymbol{\theta}}^{concept}(\boldsymbol{x}, \boldsymbol{c}_k) = G_{z\boldsymbol{v}}(\boldsymbol{z}, \boldsymbol{v}_k)$$

$$\mathcal{L}_{concept}^{(k)}(\boldsymbol{x}, c_k) = E_{\boldsymbol{\theta}}^{concept}(\boldsymbol{x}, c_k) + \log\left(\sum_{c_k \in \{0,1\}} e^{-E_{\boldsymbol{\theta}}^{concept}(\boldsymbol{x}, c_k)}\right).$$
(2)

ECBM: Global Energy Network $E_{\theta}^{global}(c, y)$

Measure the compatibility between the *K* concepts *c* and class label *y*.

$$E_{\boldsymbol{\theta}}^{global}(\boldsymbol{c},\boldsymbol{y}) = G_{vu}\left([\boldsymbol{v}_k]_{k=1}^K,\boldsymbol{u}\right)$$

$$\mathcal{L}_{global}(\boldsymbol{c},\boldsymbol{y}) = E_{\boldsymbol{\theta}}^{global}(\boldsymbol{c},\boldsymbol{y}) + \log\bigg(\sum_{m=1,\boldsymbol{c}'\in\mathcal{C}}^{M} e^{-E_{\boldsymbol{\theta}}^{global}(\boldsymbol{c}',\boldsymbol{y}_m)}\bigg).$$
(3)

Training Phase: Minimize Loss

ECBM is trained by minimizing the following total loss function:

$$\mathcal{L}_{total}(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{y}) = \mathcal{L}_{class}(\boldsymbol{x}, \boldsymbol{y}) + \lambda_c \mathcal{L}_{concept}(\boldsymbol{x}, \boldsymbol{c}) + \lambda_g \mathcal{L}_{global}(\boldsymbol{c}, \boldsymbol{y}), \tag{4}$$

$$\mathcal{L}_{total}^{all} = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{y}) \sim p_{\mathcal{D}}(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{y})} [\mathcal{L}_{total}(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{y})].$$
(5)

Inference Phase : Freeze Parameters

To predict c and y given the input x, we freeze the feature extractor F and the energy network parameters θ .

Inference Phase: Search Optimum

Search for the optimal prediction of concepts \hat{c} and the class label \hat{y} as follows:

$$\arg\min_{\widehat{\boldsymbol{c}},\widehat{\boldsymbol{y}}} \ \mathcal{L}_{class}(\boldsymbol{x},\widehat{\boldsymbol{y}}) + \lambda_c \mathcal{L}_{concept}(\boldsymbol{x},\widehat{\boldsymbol{c}}) + \lambda_g \mathcal{L}_{global}(\widehat{\boldsymbol{c}},\widehat{\boldsymbol{y}}), \tag{6}$$

$$E_{\boldsymbol{\theta}}^{joint}(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{y}) \triangleq E_{\boldsymbol{\theta}}^{class}(\boldsymbol{x}, \boldsymbol{y}) + \lambda_c E_{\boldsymbol{\theta}}^{concept}(\boldsymbol{x}, \boldsymbol{c}) + \lambda_g E_{\boldsymbol{\theta}}^{global}(\boldsymbol{c}, \boldsymbol{y}).$$
(7)

Data Model	CUB			CelebA			AWA2		
Metric	Concept	Overall Concept	Class	Concept	Overall Concept	Class	Concept	Overall Concept	Class
CBM ProbCBM* PCBM CEM ECBM	0.964 0.946 - 0.965 0.973	0.364 0.360 - 0.396 0.713	0.759 0.718 0.635 0.796 0.812	0.837 0.867 - 0.867 0.876	0.381 0.473 - 0.457 0.478	0.246 0.299 0.330 0.343	0.979 0.959 - 0.978 0.979	0.803 0.719 - 0.796 0.854	0.907 0.880 0.908 0.912

• **Slightly** outperform others in terms of *concept accuracy*.

Data Model		CUB		CelebA			AWA2		
Metric	Concept	Overall Concept	Class	Concept	Overall Concept	Class	Concept	Overall Concept	Class
CBM BrobCPM*	0.964	0.364	0.759	0.837	0.381	0.246	0.979	0.803	0.907
PCBM	- 0.940	-	0.718	- 0.807	-	0.299	-	-	0.000
CEM ECBM	0.965 0.973	0.396 0.713	0.796 0.812	0.867 0.876	0.457 0.478	0.330 0.343	0.978 0.979	0.796 0.854	0.908 0.912

- Slightly outperform others in terms of *concept accuracy*.
- Successfully capture the *interaction (and correlation)* among the concepts.

Significantly outperforms other methods in terms of *overall concept accuracy*.

Data CUB				CelebA				AWA2		
Metric	Concept	Overall Concept	Class	Concept	Overall Concept	Class	Concept	Overall Concept	Class	
CBM	0.964	0.364	0.759	0.837	0.381	0.246	0.979	0.803	0.907	
ProbCBM*	0.946	0.360	0.718	0.867	0.473	0.299	0.959	0.719	0.880	
PCBM	-	-	0.635	-	-		-	-		
CEM	0.965	0.396	0.796	0.867	0.457	0.330	0.978	0.796	0.908	
ECBM	0.973	0.713	0.812	0.876	0.478	0.343	0.979	0.854	0.912	

- Slightly outperform others in terms of *concept accuracy*.
- Successfully capture the *interaction (and correlation)* among the concepts.

Significantly outperforms other methods in terms of *overall concept accuracy*.

• Outperform the state-of-the-art on class accuracy.

Conditional Interpretation

 $p(c_k = 1 | c_{k'} = 1, y = Black and White Warble)$

Conclusion

- Propose the **first general method ECBM**, to unify:
 - Concept correction
 - Conditional interpretation
 - Concept-based prediction
- Under a unified energy formulation, compute arbitrary conditional probabilities.
- **Significantly** outperform the state-of-the-art on **real-world** datasets.

