Efficiently Computing Similarities to Private Datasets

To appear at ICLR 2024

Sandeep Silwal^ Jakub Tarnawski* Arturs Backurs* Zinan Lin* Sepideh Mahabadi*

*Microsoft Research ^MIT

Prior Covid Patients

How "similar" is my data?

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

How "similar" is my data?

Lets formalize the problem!

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

How "similar" is my data?

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

How "similar" is my data?

Private dataset $X \subset \mathbb{R}^d$

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

How "similar" is my data?

Private dataset $X \subset \mathbb{R}^d$

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

Compute $\sum_{x \in X} f(x, y)$ for a desired similarity function $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

Compute $\sum_{x \in X} f(x, y)$ for a desired similarity function $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

Private dataset $X \subset \mathbb{R}^d$

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

Compute $\sum_{x \in X} f(x, y)$ for a desired similarity function $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

- Takes in input dataset X
- \bullet Alg outputs a data structure ${\mathscr D}$
- \mathcal{D} is differential private wrt X
- On any query y, *D* approximates sum

Requirements:

- Preserve 'privacy' of existing patients
- Output an accurate answer

Compute $\sum_{x \in X} f(x, y)$ for a desired similarity function $f : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

- Takes in input dataset X
- \bullet Alg outputs a data structure ${\mathscr D}$
- \mathcal{D} is differential private wrt X
- On any query y, *D* approximates sum

Note:

We want the 'summary' D
 itself to be private

• Thus we can compute

arbitrarily many queries!

Compute $\sum_{x \in X} f(x, y)$ for a desired similarity function $f : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

- Takes in input dataset X
- \bullet Alg outputs a data structure ${\mathscr D}$
- \mathcal{D} is differential private wrt X
- On any query y, *D* approximates sum

Example:

• *D* always outputs 42!

• Always private but not very

accurate ... can we do better?

Compute $\sum_{x \in X} f(x, y)$ for a desired similarity function $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$

Input: Data X, privacy parameter ε , similarity function f(x, y)Alg Outputs: An ε -DP (differentially private) data structure \mathscr{D} .

Goal:

- On any fixed query y, have small $\mathbb{E}[|True \mathcal{D}(y)|]$.
- True = $\sum_{x \in X} f(x, y)$
- Expectation over the randomness used to construct \mathscr{D}

Input: Data X, privacy parameter ε , similarity function f(x, y)Alg Outputs: An ε -DP (differentially private) data structure \mathscr{D} .

Goal:

- On any fixed query y, minimize $\mathbb{E}[|True \mathcal{D}(y)|]$. • Expectation over the randomness used to construct \mathscr{D}

Privacy:

- "Alg outputs similar \mathcal{D} even if we change a single data point" • Smaller ε = more stringent requirements.

What are the tradeoffs between $\mathbb{E}[|True - \mathcal{D}(y)|]$ and privacy?

Our Results

Study tradeoffs for a wide class of natural (similarity or dissimilarity) functions f. Let n = |X| denote dataset size, d is dataset dimension

Our Results

Study tradeoffs for a wide class of natural functions f. Let n = |X| denote dataset size, d is dataset dimension

(Multiplicative error, Additive error) • We want both to be as small as possible.

Error Notation: (M, A) means $\mathbb{E}[|True - \mathcal{D}(y)|] \leq M \cdot True + A$

f(x, y)	Our (M,A)	Prior (M, A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$					Bounded data [Huang, Roth '1
$\ x - y\ _2$					Bounded data [Huang, Roth '1

f(x, y)	Our (M,A)	Prior (<i>M</i> , <i>A</i>)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$					Bounded data [Huang, Roth '1

f(x, y)	Our (M,A)	Prior (M,A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1

f(x, y)	Our (M,A)	Prior (M, A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1
$e^{-\ x-y\ _2}$					[Wagner et al. '2

f(x, y)	Our (M,A)	Prior (M,A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1
$e^{-\ x-y\ _2}$	0, α	0, α		$\frac{d}{\alpha^2}$	$n \gg \frac{1}{\alpha}$ [Wagner et al. '2

f(x, y)	Our (M, A)	Prior (M,A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1
$e^{-\ x-y\ _2}$	0, α	0, α	$d + \frac{1}{\alpha^4}$	$\frac{d}{\alpha^2}$	$n \gg \frac{1}{\alpha}$ [Wagner et al. '2

f(x, y)	Our (M, A)	Prior (M,A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1
$e^{-\ x-y\ _2}$	0, α	0, α	$d + \frac{1}{\alpha^4}$	$\frac{d}{\alpha^2}$	$n \gg \frac{1}{\alpha}$ [Wagner et al. '2
$\frac{1}{1 + \ x - y\ _2}$	0, α	None!	$d + \frac{1}{\alpha^4}$	None!	$n \gg \frac{1}{\alpha}$

See paper for other results and lower bounds!

f(x, y)	Our (M, A)	Prior (<i>M</i> , <i>A</i>)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, rac{d^{1.5}}{\sqrt{lpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1
$e^{-\ x-y\ _2}$	0, α	0, α	$d + \frac{1}{\alpha^4}$	$\frac{d}{\alpha^2}$	$n \gg \frac{1}{\alpha}$ [Wagner et al. '2
$\frac{1}{1 + \ x - y\ _2}$	0, α	None!	$d + \frac{1}{\alpha^4}$	None!	$n \gg \frac{1}{\alpha}$

What the heck do all of our results have in common??

f(x, y)	Our (M,A)	Prior (M, A)	Our Query Time	Prior Query Time	Note/Ref
$\ x - y\ _1$	$\alpha, \frac{d^{1.5}}{\sqrt{\alpha}}$	$0, (nd^7)^{1/3}$	d	d	Bounded data [Huang, Roth '1
$\ x - y\ _2$	$\alpha, \frac{1}{\alpha^{1.5}}$	Similar as above	d	$\geq d$	Bounded data [Huang, Roth '1
$e^{-\ x-y\ _2}$	0, α	0, α	$d + \frac{1}{\alpha^4}$	$\frac{d}{\alpha^2}$	$n \gg \frac{1}{\alpha}$ [Wagner et al. '2
$\frac{1}{1 + \ x - y\ _2}$	0, α	None!	$d + \frac{1}{\alpha^4}$	None!	$n \gg \frac{1}{\alpha}$

All results are unified under one 'idea'

All results are unified under one 'idea'

Privacy

Sublinear Algorithms

*Note Mickey Mouse is in the public domain now I think.... Pls don't sue me

• Step 1: Create Data structure \mathscr{D} (first ignoring privacy)

► *I* has sublinear query time

- Step 1: Create Data structure \mathscr{D} (first ignoring privacy)
 - ► D has sublinear query time
- Step 2: Add noise to every entry of \mathcal{D} for privacy (common Differential Privacy operation)
- Step 3: Use $\hat{\mathscr{D}}$ to compute query answer

- Step 1: Create Data structure Structure Data Structure Stru
 - Image: A set of the set of the
- Step 2: Add noise to every entry of \mathscr{D}
- Step 3: Use $\hat{\mathscr{D}}$ to compute query answer

Sweeping lots of things under the rug here!

- Step 1: Create Data structure *D*
 - ► *I* has sublinear query time
- Step 2: Add noise to every entry of \mathscr{D}
- Step 3: Use $\hat{\mathscr{D}}$ to compute query answer
- of $\hat{\mathscr{D}}$ on any query.
- This means we don't 'accumulate' too much noise!

<u>Crux</u>: Because $\hat{\mathscr{D}}$ has sublinear query time, we only 'see a small portion'

- Step 1: Create Data structure *D*
 - ► *I* has sublinear query time
- Step 2: Add noise to every entry of \mathscr{D}
- Step 3: Use $\hat{\mathscr{D}}$ to compute query answer
- of $\hat{\mathscr{D}}$ on any query.
- Thus, there is hope for small error!

<u>Crux</u>: Because $\hat{\mathscr{D}}$ has sublinear query time, we only 'see a small portion'

What sublinear stuff are we using?

Identifying the 'right' subline of the paper!

Identifying the 'right' sublinear structures is the main part

• $||x - y||_1 = \sum_i |x_i - y_i| \implies$ Sufficient to solve 1D problem

- be solved by a tree
- We can design such a tree with sublinear query time

• $||x - y||_1 = \sum_i |x_i - y_i| \implies$ Sufficient to solve 1D problem Mantra of computational geometry: every 1D problem can

• $e^{-\|x-y\|_2}$: We prove a novel dimensionality reduction result

- <u>= private</u> map!
- work

• $e^{-\|x-y\|_2}$: We prove a novel dimensionality reduction result • Can greatly reduce the dimension of data using an <u>oblivious</u>

New dimensionality reduction + prior work = faster prior

- $\frac{1}{1+\|x-y\|_2}$: Reduce this kernel to the case of $e^{-\|x-y\|_2}$
 - number of terms that look like e^{-z}

• Use function approx. theory to write $\frac{1}{1+7}$ as a <u>sublinear</u>

- Step 1: Create Data structure structure
 - Image: A set of the set of the
- Step 2: Add noise to every entry of \mathscr{D}
- Step 3: Use $\hat{\mathscr{D}}$ to compute query answer

Different tools!

Ideas are implementable

- Private image classification task
- Use private similarity data structures to classify
- Similar measured on embeddings of images
- Embeddings curated from a large public model

No deep learning required!

 $> 10^3$ x faster than SOTA (which uses deep learning magic) for comparable acc.

Thank you and don't forget to stretch!

