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1 Recap: variational inference
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• Notation:


• : observed variables


• : latent variables


• : parameter set


• Complete data likelihood: 


• Marginal likelihood: , which is intractable when the problem is 
complicated.


• Maximum likelihood estimation: 

x

z

θ

p(x, z; θ)

p(x; θ) = ∫ p(x, z; θ) dz

̂θ = argmaxθ p(x; θ)

Latent variable model (LVM)
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Variational inference
• Use a variational distribution  to 

approximate .


• Consider the reverse KL divergence: 

 


• So, ELBO is a lower bound of .


• Maximize ELBO w.r.t.  increases , and 
maximize ELBO w.r.t.  reduces the reverse KL 
divergence .

q(z |x; ϕ)
p(z |x; θ)

KL(q(z |x; ϕ)∥p(z |x; θ)) = ∫ q(z |x; ϕ) ln
q(z |x; ϕ)
p(z |x; θ)

dz

= ln p(x; θ) − 𝔼q[ln p(x, z; θ) − ln q(z |x; ϕ)]
= ln p(x; θ) − ELBO(x; θ, ϕ)

ln p(x; θ)

θ ln p(x; θ)
ϕ

KL(q(z |x; ϕ)∥p(z |x; θ))

ln p(x; θ)

KL(q(z |x; ϕ)∥p(z |x; θ))

ELBO(x; θ, ϕ)
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Numerical estimator of ELBO
• Numerical estimator of ELBO: 

  

 
where .


• The bias of the ELBO estimator: 



• Is there any other estimator that approximates 
 better?

̂ELBO(x; θ, ϕ) =
1
K

K

∑
k=1

[ln p (x, z(k); θ) − ln q (z(k) x; ϕ)]
{z(k)}K

k=1
∼ q(z |x; ϕ)

𝔼q [ ̂ELBO(x; θ, ϕ)] = ELBO(x; θ, ϕ)

ln p(x; θ)
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ln p(x; θ)

KL(q(z |x; ϕ)∥p(z |x; θ))
 ELBO(x; θ, ϕ)

𝔼q [ ̂ELBO(x; θ, ϕ)]



2 Importance sampling
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Directly approximate the marginal
• Importance sampling uses a proposal distribution  to estimate the integration: 

 

where .


• Numerical stable IS estimator in log space 
 




• And its gradient estimator 
 

q(z |x; ϕ)

p(x; θ) = ∫ p(x, z; θ) dz = 𝔼q[p(x, z; θ)/q(z |x; ϕ)] ≈
1
K

K

∑
k=1

p (x, z(k); θ)
q (z(k) x; ϕ)

=: ̂p(x; θ, ϕ)

{z(k)}K
k=1

∼ q(z |x; ϕ)

ln ̂p(x; θ, ϕ) = logsumexp [ln p (x, z(k); θ) − ln q (z(k) x; ϕ)] − ln K

∂ ln p(x; θ)
∂θ

≈
∂
∂θ

ln ̂p(x; θ, ϕ)
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Compare VI and IS
• The bias of the IS estimator:

 


• The bias of the IS estimator  as .


• Particularly, when , 
.


• So, compared with ,  
is an asymptotically tighter lower bound.

𝔼q [ln ̂p(x; θ, ϕ) − ln p(x; θ)] ≈ −
1

2K
χ2(p(z |x; θ)∥q(z |x; ϕ))

→ 0 K → ∞

K = 1
̂ELBO(x; θ, ϕ) = ln ̂p(x; θ, ϕ)

̂ELBO(x; θ, ϕ) ln ̂p(x; θ, ϕ)

ln p(x; θ)

𝔼q [ln ̂p(x; θ, ϕ)]
KL(q(z |x; ϕ)∥p(z |x; θ))

χ2(p(z |x; θ)∥q(z |x; ϕ))/(2K)

 ELBO(x; θ, ϕ)
𝔼q [ ̂ELBO(x; θ, ϕ)]
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Validate this by numerical simulations

Since IS estimates  better than VI with a large , we can use IS to learn .ln p(x; θ) K θ
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ln p(x; θ)

𝔼q [ln ̂p(x; θ, ϕ)]
KL(q(z |x; ϕ)∥p(z |x; θ))

χ2(p(z |x; θ)∥q(z |x; ϕ))/(2K)

 ELBO(x; θ, ϕ)
𝔼q [ ̂ELBO(x; θ, ϕ)]



3 VIS as the best way of doing IS
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Choosing the optimal proposal distribution
• Remember the bias of the IS estimator is .


• The smaller the absolute bias, the better the estimator.


• In fact, the effectiveness of the IS estimator is 


• So, we should minimize this forward  divergence w.r.t.  to find the optimal choice of the proposal 
distribution  for the current .


• Similar to the case we encountered in the reverse KL divergence, we don’t know , so we derive 
the following equation.


• 


• We convert minimizing  to minimizing .

−χ2(p(z |x; θ)∥q(z |x; ϕ))/(2K)

Varq [ ̂p(x; θ, ϕ)] =
p(x; θ)2

K
χ2(p(z |x; θ)∥q(z |x; ϕ))

χ2 ϕ
q(z |x; ϕ) p(z |x; θ)

p(z |x; θ)

χ2(p(z |x; θ)∥q(z |x; ϕ)) =
1

p(x; θ)2 ∫
p(x, z; θ)2

q(z |x; ϕ)
dz − 1 =:

1
p(x; θ)2

V(x; θ, ϕ) − 1

χ2(p(z |x; θ)∥q(z |x; ϕ)) V(x; θ, ϕ)
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Estimate and minimize  in log spaceV(x; θ, ϕ)
• For numerical stability,  should be estimated and minimized in log space.


• 


• The score function gradient estimator of  is 
 

 

V(x; θ, ϕ)

ln V(x; θ, ϕ) ≈ logsumexp [2 ln p (x, z(k); θ) − 2 ln q (z(k) x; ϕ)] − ln K = ln ̂V(x; θ, ϕ)

ln V(x; θ, ϕ)

∂ ln V(x; θ, ϕ)
∂ϕ

≈
∂

∂ϕ
1
2

ln ̂V(x; θ, ϕ)
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Comparison of VI and VIS
Only changes two lines in the code

VI VIS

Sample

E-step

M-step

Minimize  w.r.t.  
by maximizing  w.r.t. 

KL(q(z |x; ϕ)∥p(z |x; θ)) ϕ
ELBO(x; θ, ϕ) ϕ

Minimize  w.r.t.  
by minimizing  w.r.t. 

χ2(p(z |x; ϕ)∥q(z |x; θ)) ϕ
ln V(x; θ, ϕ) ϕ

Sample  from {z(k)}K
k=1

q(z |x; ϕ)

Maximize  w.r.t.  
by maximizing  w.r.t. 

ln p(x; θ) θ
ELBO(x; θ, ϕ) θ Maximize  w.r.t. ln p(x; θ) θ
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4 Applications to three latent 
variable models
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Mixture model: GMM-Bernoulli
• Model


•   with 


• 


• 


• Variational/proposal distribution family


•  for 


•  

p(z; θ) =
4

∑
i=1

πi 𝒩 (z; μi,12) π1 = π2 =
1 − π

2
, π3 = π4 =

π
2

p(x |z; θ) = Bernoulli(x; logistic(z))

θ = {π, μ1, μ2, μ3, μ4}

q(z |x; ϕ) = 𝒩 (z; cx, σ2
x ) x ∈ {0,1}

ϕ = {c0, c1, σ0, σ1}
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Mixture model: GMM-Bernoulli
• (a) Quantitative 

comparison on the test 
dataset (e.g., test 
marginal log-likelihood).


• (b) parameter recovery.


• (c) Visualization of the 
true posterior (dashed), 
learned posterior (solid), 
and approximated 
posterior (dotted).

(a) (b)

(c)
Posterior VI

Posterior VBIS

Posterior CHIVI

Posterior VIS

V
I

C
H

IV
I

V
B

IS

V
IS
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Mixture model: GMM-Bernoulli
• VI: zero-forcing/mode-

seeking behavior of 
minimizing the reverse 
KL. Good ELBO, reverse 
KL is nearly 0, but in fact 
both  and 

 are far from 
.


• VIS: mass-covering/
mean-seeking behavior of 
minimizing the forward 

. This enlarges the 
effective support range of 

 for sampling.

p(z |x; θ)
q(z |x; ϕ)
p(z |x; θtrue)

χ2

q(z |x; ϕ)

(a) (b)

(c)
Posterior VI

Posterior VBIS

Posterior CHIVI

Posterior VIS

V
I

C
H

IV
I

V
B

IS

V
IS
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VAE on MNIST
• Model


• 


• 


• : decoder’s parameters


• Variational/proposal distribution family


• , where 


• : encoder’s parameters

p(z; θ) = 𝒩(z; 0, I)

p(x |z; θ) = Bernoulli(x; logistic(decoder(z)))

θ

q(z |x; ϕ) = 𝒩 (x; μ(x), diag σ2(x)) μ(x), σ2(x) = encoder(x)

ϕ
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VAE on MNIST
• (a) Convergence curve of the marginal log-likelihood on the test set.


• (b) Examples of raw images and the reconstructed images by different methods.

(a) (b)
raw

VI

CHIVI

VBIS

VIS

IWAE
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Partially observable GLM (synthetic)
• This is a very hard problem, since 

 cannot be explicitly 
factored as  (e.g., 
mixture model, HMM, PLDS, VAE, 
etc).


•  of  neurons are visible and the 
remaining  neurons are hidden.


•  are spike trains from visible 
neurons, and  are spike trains 
form hidden neurons.


• , where 
 represents the influence from 

neuron  to neuron .

p(x, z; θ)
p(x |z; θ)p(z; θ)

V N
H

X
Z

θ = {b ∈ ℝN, W ∈ ℝN×N}
wn←n′￼

n′￼ n

z1 z2 z3

x1 x2 x3

z1 z2 z3

x1 x2 x3

(a) (b)

(c)

(d)

VI CHIVI VBIS VIStrue linear

V
I

C
H

IV
I

V
B

IS

V
IS
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 f
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q

p(X, Z; θ)

q(Z | X; ϕ)
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Partially observable GLM (synthetic)
• (b) Quantitative comparison on 

the test dataset; weight and 
bias error.


• (c) The estimated weight  
and the bias  by different 
methods compared with the 
true. The visible-to-hidden 
block learned by VIS is 
significantly better than others.


• (d) Predictive firing rates from 
different methods compared 
with the true. VIS matches the 
true the best.

W
b

z1 z2 z3

x1 x2 x3

z1 z2 z3

x1 x2 x3
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(c)

(d)
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Partially observable GLM (retinal ganglion cell)
•  retinal ganglion neurons are recorded while a mouse is performing a visual test 

for about 20 mins (Pillow & Scott, 2012). Neuron 1-16 are OFF cells, neuron 17-27 are 
ON cells.


• (a) Quantitative comparison on the test dataset, with different numbers of hidden neurons 
. 

V = 27

H ∈ {1,2,3}
(a) (b)

(c) VI CHIVI VBIS VIS

V
I

V
IS

C
H
IV
I

V
B
IS
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Partially observable GLM (retinal ganglion cell)
• (b) The hidden representative neuron learned by VIS behaves like an OFF cell. The sign of 

the weight from this hidden neuron to the visible neurons clearly tells us the type of those 
visible post-synaptic neurons.

(a) (b)

(c) VI CHIVI VBIS VIS

V
I

V
IS

C
H
IV
I

V
B
IS
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OFF cells

ON cells
1 hidden representative neuron

Weights from the 
one hidden to all 
visible neurons



Partially observable GLM (retinal ganglion cell)
• (c) 20 randomly sampled predictive firing rates from . The  learned 

by VIS provides the largest variability, which further improves the effectiveness of 
learning .

q(Z |X; ϕ) q(Z |X; ϕ)

θ

(a) (b)

(c) VI CHIVI VBIS VIS

V
I

V
IS

C
H
IV
I

V
B
IS
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Summary
• VIS is the best way of doing importance sampling (IS), from the perspective of statistics.


• VIS has succinct and numerically stable gradient estimator derived in log space.


• By only changing two lines in the code, VIS learns significantly better model parameters, 
and achieves better test performance.
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Thanks for listening!


