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Some Graph Theory

Similarity

An automorphism of G is a permutation σ on G satisfying σ · G = G .
Nodes v ,w ∈ V (G ) are similar if there is an automorphism σ of G such
that σ(v) = w . Similar nodes form equivalence classes called orbits.

Figure: Graph with nodes colored by orbit.



Structural Inductive Biases

Equivariance

Node-labelling function f on a domain D closed under permutation is
equivariant if f (σ · G ) = σ · f (G ) holds for all G ∈ D and permutations σ
on V (G ).
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Figure: Example of an equivariant function f .



The Limits of Equivariance
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Figure: Non-equivariant molecular transformation that increases lipophilicity
(LogP), where the nodes are labelled with the atom type, without positional
information.

Proposition 1

Let f be an equivariant node-labelling function and let G be a labelled
graph in its domain. If v ,w ∈ V (G ) are similar, then f (G )v = f (G )w .
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graph in its domain. If v ,w ∈ V (G ) are similar, then f (G )v = f (G )w .



Orbit-Equivariance

Definition 1

A node-labelling function f on domain D closed under permutation is
orbit-equivariant if, for all labelled graphs G ∈ D, permutations σ on
V (G ), and orbits r ∈ R(G ), it holds that
{{f (σ · G )σ(v) | v ∈ r}} = {{f (G )v | v ∈ r}}.



Orbit-Equivariance in the Hierarchy of Graph Functions

Not all orbit-equivariant functions are equivariant:

Figure: An orbit-equivariant function that is not equivariant.

Proposition 2

All equivariant functions are orbit-equivariant, but not vice-versa. There
exist node-labelling functions which are not orbit-equivariant.



Max-Orbit and Orbit-Equivariance

Proposition 3

If f is orbit-equivariant and max-orbit(f ) = 1, then f is equivariant.

Figure: A node-labelling function with max-orbit = 1 that is not equivariant.



Non-equivariant GNN Architectures
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Figure: Architecture for constructing orbit-equivariant GNNs.



Model Expressivity

Theorem 2

The expressivity of our proposed models is as follows, where for a class of
models X , the claim “X is not equivariant” means that “there exists
f ∈ X such that f is not equivariant”:

1. Unique-ID-GNNs are not orbit-equivariant and, for any fixed n, can
approximate any node-labelling function f : Gn → Rn, where Gn is the
set of graphs with ≤ n nodes.

2. RNI-GNNs are equivariant in expectation and, for any fixed n, can
approximate any equivariant function f : Gn → Rn with probability
arbitrarily close to 1. They can approximate some non-equivariant
and orbit-equivariant functions with probability arbitrarily close to 1,
but there exist RNI-GNNs which, with probability arbitrarily close to
1, are not orbit-equivariant.



Model Expressivity

Theorem 2

The expressivity of our proposed models is as follows, where for a class of
models X , the claim “X is not equivariant” means that “there exists
f ∈ X such that f is not equivariant”:

3. Orbit-Indiv-GNNs are not equivariant but are orbit-equivariant on
graphs whose orbits are distinguishable by orbit-1-WL. For any
m ∈ Z+, there exist Orbit-Indiv-GNNs f with max-orbit(f ) > m.

4. m-Orbit-Transform-GNNs f are not equivariant but are
orbit-equivariant on graphs whose orbits are distinguishable by
orbit-1-WL. They have max-orbit(f ) ≤ m and there exist
m-Orbit-Transform-GNNs f with max-orbit(f ) = m.



Datasets
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Figure: Molecular transformation.

Bioisostere - swap out some atoms in a given molecule to achieve
minimal lipophilicity. This is an important factor in drug design.

Alchemy-Max-Orbit-m - based off Alchemy dataset, designed to
test model performance for orbits of increasing sizes.



Results

Table: Mean and standard deviation of final model accuracy percentage on the
test datasets.

Dataset Model Graph Accuracy Orbit Accuracy Node Accuracy

Bioisostere GCN 52.4± 6.37 92.9± 1.14 94.4± 0.79
(cross-entropy Unique-ID-GCN 66.1± 5.13 94.5± 0.97 95.6± 0.62
loss) RNI-GCN 63.6± 4.29 93.9± 0.86 95.1± 0.76

Orbit-Indiv-GCN 69.9± 4.6869.9± 4.6869.9± 4.68 95.4± 0.6395.4± 0.6395.4± 0.63 96.3± 0.4996.3± 0.4996.3± 0.49
2-Orbit-Transform 57.1± 6.43 93± 0.99 94.1± 0.79

Alchemy- Unique-ID-GCN 20± 4.57 79.9± 2.01 77± 1.52
Max-Orbit-2 RNI-GCN 0± 0 74.5± 1.7 75.2± 1.66
(orbit-sorting Orbit-Indiv-GCN 51.9± 4.3851.9± 4.3851.9± 4.38 87.5± 1.7887.5± 1.7887.5± 1.78 90.6± 1.1290.6± 1.1290.6± 1.12
cross-entropy) 2-Orbit-Transform 47.9± 6.45 86.8± 1.53 85.1± 1.66

Alchemy- Unique-ID-GCN 66.8± 7.15 84.8± 2.97 95.4± 1.07
Max-Orbit-6 RNI-GCN 44.9± 7.19 78.5± 3.39 91.4± 1.47
(orbit-sorting Orbit-Indiv-GCN 83.4± 4.2283.4± 4.2283.4± 4.22 88.9± 2.7188.9± 2.7188.9± 2.71 97.1± 1.4697.1± 1.4697.1± 1.46
cross-entropy) 6-Orbit-Transform 10.6± 4.14 71.2± 2.47 87.6± 1.08



Results

Figure: Graph accuracy with standard error on the test datasets across all models
using orbit-sorting cross-entropy: Bioisostere (left), Alchemy-Max-Orbit-2
(center), and Alchemy-Max-Orbit-6 (right).



Future Work

Orbit-equivariance can be generalized to other data structures besides
graphs.

Designing optimal bioisosteres is complex and deserves further
investigation.

Identification of other problems that require non-equivariant and
orbit-equivariant models to solve.

Finally, design better orbit-equivariant GNNs to solve such problems.


