

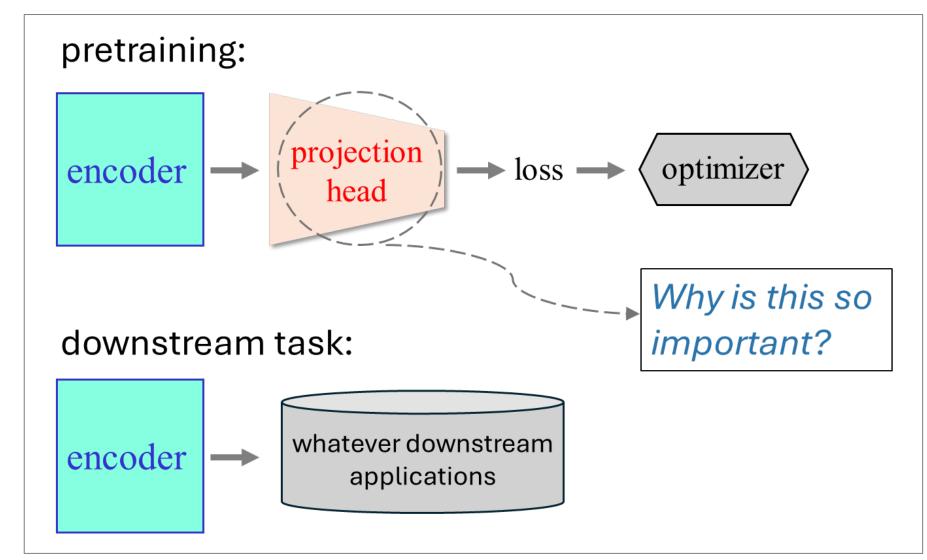
Investigating the Benefits of Projection Head for Representation Learning

ICLR

Yihao Xue, Eric Gan, Jiayi Ni, Siddharth Joshi, Baharan Mirzasoleiman

Introduction

An effective technique for obtaining high-quality representations is **adding a projection head** on top of the encoder during pretraining, then **discarding** it and using the pre-projection representations for downstream tasks.



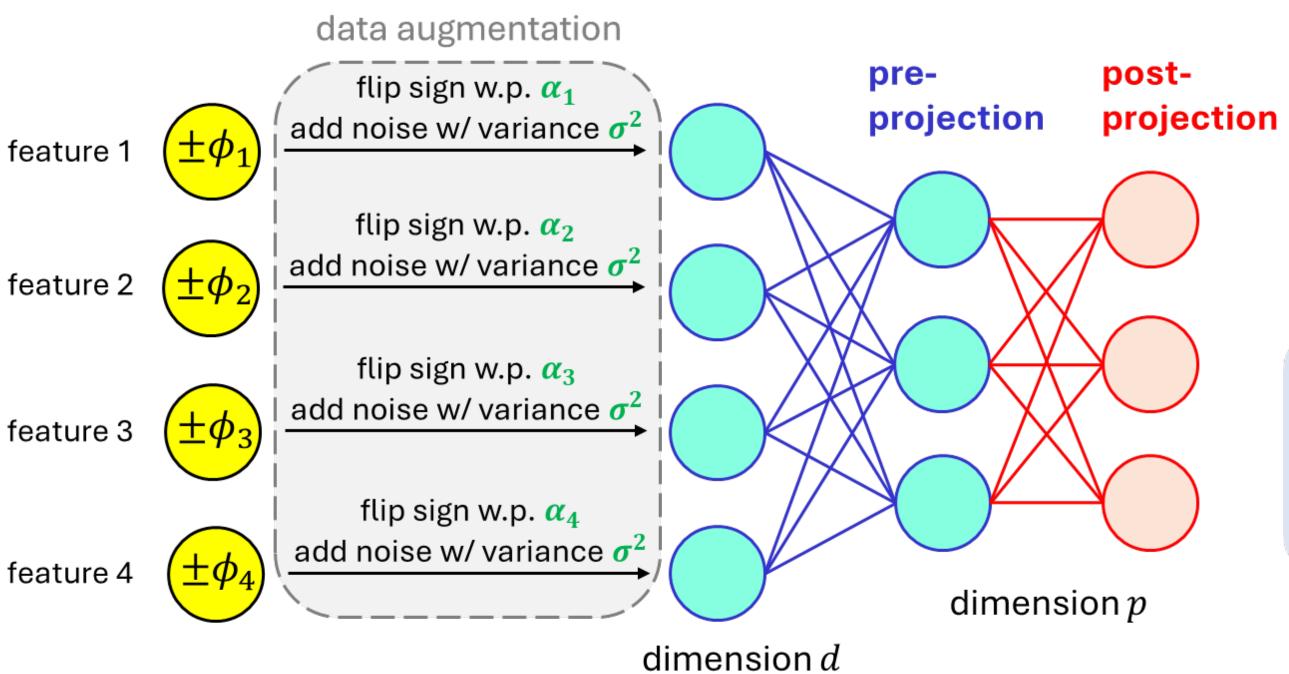
Our main conclusion: pre-projection representations represent input features more equally or capture a broader range of features compared to post-projection representations.

Self-supervised Contrastive Learning

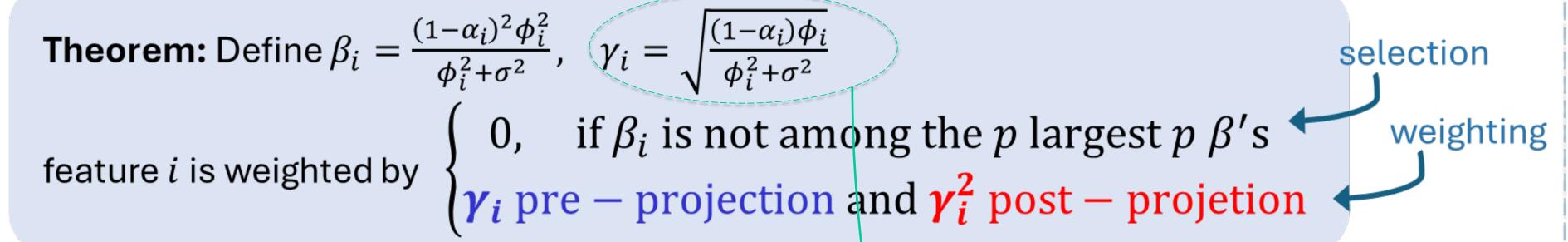
Pretraining loss

max sim. b/w augmentations of the same examples min sim. b/w augmentations of different examples

Simple data & linear model



Self-supervised Contrastive Learning (Cont'd)



Key insights

- The model selects and weights features based on the interplay between feature strengths (ϕ) , noise (σ) , and data augmentation (α)
- Features are weighted more equally pre-projection than post-projection

When is it beneficial to use pre-projection representations?

Assume that **feature** i^* is the only one useful for the downstream task. Ideally, pretraining should assign a large weight to it relative to other features. If this doesn't occur, i.e., pretraining assigns it a small weight (small γ_{i^*}), it would be better to use the pre-projection representations.

Here are some concrete scenarios considering the interaction between ϕ , σ , α

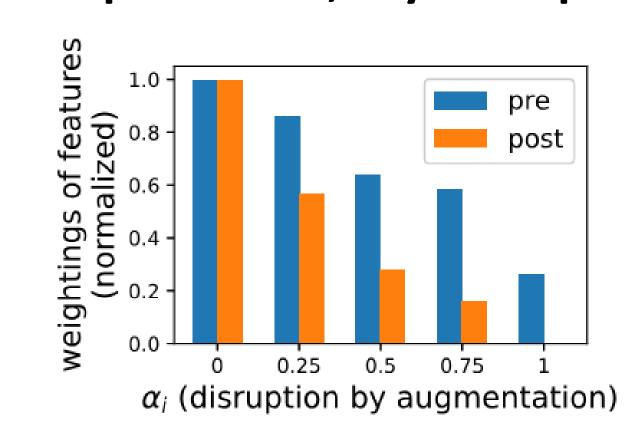
Corollary (Informal):

- 1. Data augmentation disrupts feature i^* too much (large $\alpha_{i^*} \to \text{small } \gamma_{i^*}$)
- 2. Feature i^* is too weak in pretraining data (very small $\phi_{i^*} \to \text{small } \gamma_{i^*}$)
- 3. Feature i^* is too strong in pretraining data (very large $\phi_{i^*} \to \text{small } \gamma_{i^*}$)

What about non-linear models?

Theorem (Informal): Non-linear models allow pre-projection representations to capture features that are **entirely absent** post-projection

Experiments, toy example



t-SNE, pre

fine transferability.



Supervised Contrastive Learning and Supervised Learning

Similar conclusions hold for both linear and non-linear models. Notably, the

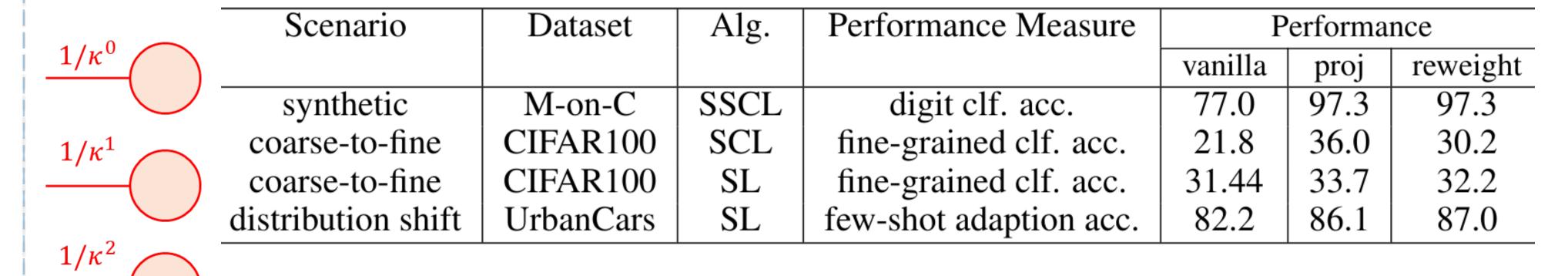
conclusions concerning non-linear models suggest that using pre-projection

representations can mitigate Neural/Class Collapse, thereby enhancing coarse-to-

All subclasses are distinguishable.

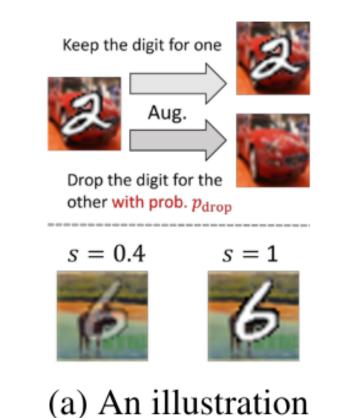
Neural/Class Collapse:
Subclasses within the same class are indistinguishable

Replacing the Projection Head with a Fixed Reweighting Head



The fixed reweighting head can achieve improvements that are comparable to those of the projection head across many tasks and algorithms.

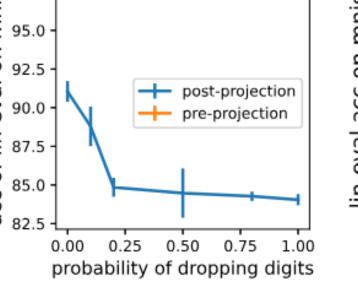
Experiments, semi-synthetic

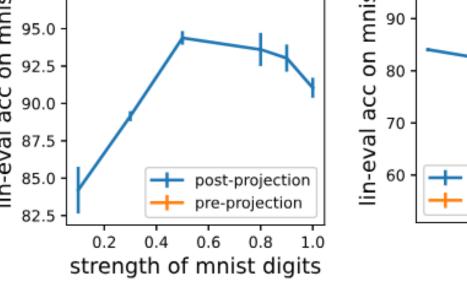


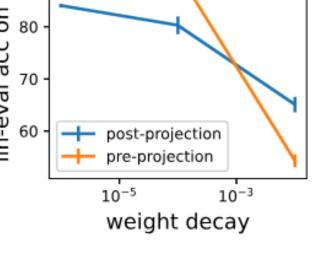
post

1.6 0.8 0.4 0.2 0.1 $\frac{1}{20}$ $\frac{1}{40}$ $\frac{1}{80}$ $\frac{1}{160}$

 ϕ_i (strength of features)







lustration (b) Effect of data aug. (c) Effect of strength

th (d) Effect of wd