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• Model Based Reinforcement Learning (MBRL): Trains a predictive model of 
the system to learn a policy in a noisy environment (aleatoric uncertainties)

• Learning a model introduces epistemic uncertainties due to lack of 
sufficient data or data with insufficient information

• Robust and adaptive control theory is developed to handle uncertainties 
while tracking a nominal trajectory, [1].

• Consolidating control theoretic methods with MBRL is difficult due to 
different underlying model structures:  
e.g. control-affine vs highly nonlinear (Neural Network)
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stuff

(a) Conventional MBRL + Control framework [2,3]
(b) Comparison of performance 

between NN vs control-affine model

The model is constrained to control-affine class. 
Robust/Adaptive controller can be employed.

MBRL algorithm with control-affine model 
class fails to learn the dynamics

• Modifying underlying NN structure to augment control-theoretic methods 
compromises original performance

• We propose a control-theoretic add-on module for MBRL algorithms: that 
offer improved robustness without compromising original performance

• Framework to counter uncertainties 
with guaranteed performance

• Uses State predictor, 
Adaptation law, and Low-pass filter

• Requires a control-affine model 
structure
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1. Control-affine model approximation

2. Model switching and switching law

3. ℒ1 Control input augmentation

• First order Taylor series approximation of nonlinear 
predictive model around �𝑢𝑢

4. Theoretical result

Affine in 𝑢𝑢𝑡𝑡

• Switch the model (obtain a new control-affine model) 
when the switching condition holds

• Otherwise, maintain the current model

• Setting ϵa = 0 recovers the baseline MBRL algorithm

• Use the current control-affine model to obtain ℒ1
control input to cancel out uncertainties

(c) ℒ1 - MBRL framework 
The ℒ1 add-on module adds robustness to the underlying MBRL 

algorithm without perturbing it. Agnostic property of the method 
offers wide applicability to various MBRL algorithms

• The state predictor error is upper bounded as 

Controlled parameter

Learning error Affinization error

• Affinization error tends to 0 as 𝑇𝑇𝑠𝑠 → 0 for 𝑡𝑡 ≥ 𝑇𝑇𝑠𝑠

• Performance comparison between baseline MBRL 
(METRPO) and ℒ1 - MBRL
• ℒ1 - MBRL boosts baseline MBRL performances with 

enhanced robustness to external disturbance

• Contribution of ℒ1 in training vs testing
• ℒ1 during training : Collect better data samples
• ℒ1 during testing : Uncertainty rejection
• ℒ1 ON for both training and testing shows best result

• Addressing Sim2Real gap with ℒ1 - MBRL
• Train MBRL in noise-free environment
• Implement ℒ1 - MBRL in noisy (real) environment
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