Robust Model Based Reinforcement Learning Using \mathcal{L}_1 Adaptive Control Minjun Sung*, Sambhu H. Karumanchi*, Aditya Gahlawat, Naira Hovakimyan University of Illinois Urbana-Champaign, Illinois, USA {mjsung2, shk9, gahlawat, nhovakim} @illinois.edu (*Equal Contribution) **Presentation** Videos Codes #### Introduction - Model Based Reinforcement Learning (MBRL): Trains a predictive model of the system to learn a policy in a *noisy* environment (aleatoric uncertainties) - Learning a model introduces epistemic uncertainties due to lack of sufficient data or data with insufficient information - Robust and adaptive control theory is developed to handle uncertainties while tracking a nominal trajectory, [1]. - Consolidating control theoretic methods with MBRL is difficult due to different underlying model structures: e.g. control-affine vs highly nonlinear (Neural Network) (a) Conventional MBRL + Control framework [2,3] k [2,3] betv (b) Comparison of performance between NN vs control-affine model The model is constrained to control-affine class. Robust/Adaptive controller can be employed. MBRL algorithm with control-affine model class fails to learn the dynamics - Modifying underlying NN structure to augment control-theoretic methods compromises original performance - We propose a control-theoretic add-on module for MBRL algorithms: that offer improved robustness without compromising original performance ## \mathcal{L}_1 Adaptive Control [1] - Framework to counter uncertainties with guaranteed performance - Uses State predictor, Adaptation law, and Low-pass filter - Requires a control-affine model structure ## Proposed Method: \mathcal{L}_1 - MBRL ## 1. Control-affine model approximation First order Taylor series approximation of nonlinear predictive model *around* \bar{u} $$\hat{f}_{\theta}(x_{t}, u_{t}) \approx \hat{f}_{\theta}(x_{t}, \bar{u}) + \left(\left[\nabla_{u} \hat{f}_{\theta}(x_{t}, u) \right]_{u = \bar{u}} \right)^{\top} (u_{t} - \bar{u})$$ $$= \underbrace{\hat{f}_{\theta}(x_{t}, \bar{u}) - \left(\left[\nabla_{u} \hat{f}_{\theta}(x_{t}, u) \right]_{u = \bar{u}} \right)^{\top} \bar{u}}_{\triangleq h_{\theta}(x_{t})} + \underbrace{\left(\left[\nabla_{u} \hat{f}_{\theta}(x_{t}, u) \right]_{u = \bar{u}} \right)^{\top} u_{t}}_{\triangleq h_{\theta}(x_{t})} \triangleq \hat{f}_{\theta}^{a}(x_{t}, u_{t}; \bar{u}).$$ $$\triangleq g_{\theta}(x_{t})$$ $$\triangleq h_{\theta}(x_{t})$$ Affine in u_{t} #### 2. Model switching and switching law • Switch the model (obtain a new control-affine model) when the switching condition holds $\|\hat{f}_{\theta}^{a}(x_{t}, u_{t}; \bar{u}) - \hat{f}_{\theta}(x_{t}, u_{t})\| \geq \epsilon_{a}$ Controlled parameter - Otherwise, maintain the current model - Setting $\epsilon_a = 0$ recovers the baseline MBRL algorithm ### 3. \mathcal{L}_1 Control input augmentation • Use the current control-affine model to obtain \mathcal{L}_1 control input to cancel out uncertainties (c) \mathcal{L}_1 - MBRL framework The \mathcal{L}_1 add-on module adds robustness to the underlying MBRL algorithm without perturbing it. Agnostic property of the method offers wide applicability to various MBRL algorithms #### 4. Theoretical result The state predictor error is upper bounded as $$\|e(t,x(t),u(t)\| \leq \epsilon_l + \epsilon_a, \quad \forall t \in [0,T_s)$$ $\|e(t,x(t),u(t))\| = 2\epsilon_a + \mathcal{O}(T_s), \quad \forall t \in [T_s,t_{\max}),$ Learning error Affinization error • Affinization error tends to 0 as $T_s \to 0$ for $t \ge T_s$ ## Experimental Results - Performance comparison between baseline MBRL (METRPO) and \mathcal{L}_1 MBRL - \mathcal{L}_1 MBRL boosts baseline MBRL performances with enhanced robustness to external disturbance | | Noise-free | | $\sigma_{\mathbf{a}} = 0.1$ | | $\sigma_{\mathbf{o}} = 0.1$ | | |-------------|---------------------|--------------------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------------| | Env. | METRPO | \mathcal{L}_1 -METRPO | METRPO | \mathcal{L}_1 -METRPO | METRPO | \mathcal{L}_1 -METRPO | | Inv. P. | -51.3 ± 67.8 | -0.0 ± 0.0 | -105.2 ± 81.6 | -0.0 ± 0.0 | -74.22 ± 74.5 | $\mathbf{-21.3} \pm 20.7$ | | Swimmer | 309.5 ± 49.3 | 313.8 ± 18.7 | 258.7 ± 113.7 | 322.7 ± 5.3 | 30.7 ± 56.1 | $\textbf{79.2} \pm \textbf{85.0}$ | | Hopper | 1140.1 ± 552.4 | 1491.4 ± 623.8 | 609.0 ± 793.5 | 868.7 ± 735.8 | -1391.2 ± 266.5 | -486.6 ± 459.9 | | Walker | -6.6 ± 0.3 | -6.9 ± 0.5 | -9.8 ± 2.2 | -5.9 ± 0.3 | -30.3 ± 28.2 | -6.3 ± 0.3 | | Halfcheetah | 2367.3 ± 1274.5 | $\textbf{2588.6} \pm \textbf{955.1}$ | 1920.3 ± 932.4 | 2515.9 ± 1216.4 | 1419.0 ± 517.2 | 1906.3 ± 972.7 | | Haircneetan | 2307.3 ± 1274.5 | 2588.0 ± 955.1 | 1920.3 ± 932.4 | 2515.9 ± 1216.4 | 1419.0 ± 517.2 | 1906.3 ± 972 | - Contribution of \mathcal{L}_1 in training vs testing - \mathcal{L}_1 during training: Collect better data samples - \mathcal{L}_1 during testing: Uncertainty rejection - \mathcal{L}_1 ON for both training and testing shows best result - Addressing Sim2Real gap with \mathcal{L}_1 MBRL - Train MBRL in noise-free environment - Implement \mathcal{L}_1 MBRL in noisy (real) environment | | $\sigma_{\mathbf{a}} = 0.1$ | | $\sigma_{\mathbf{o}} = 0.1$ | | $\sigma_{\mathbf{a}} = 0.1 \ \mathbf{\&} \ \sigma_{\mathbf{o}} = 0.1$ | | |-------------|-----------------------------|---------------------------------|-----------------------------|-------------------------------------|---|--------------------------------------| | Env. | METRPO | \mathcal{L}_1 -METRPO | METRPO | \mathcal{L}_1 -METRPO | METRPO | \mathcal{L}_1 -METRPO | | Inv. P. | 30.2 ± 45.1 | $\mathbf{-0.0} \pm 0.0$ | -74.1 ± 53.1 | -3.1 ± 2.0 | $ -107.0 \pm 72.4$ | -6.1 ± 4.6 | | Swimmer | 250.8 ± 130.2 | 330.5 ± 5.7 | 337.8 ± 2.9 | 331.2 ± 8.34 | 248.2 ± 133.6 | 327.3 ± 6.8 | | Hopper | 198.9 ± 617.8 | 623.4 ± 405.6 | -84.5 ± 1035.8 | $\textbf{157.1} \pm \textbf{379.7}$ | 87.5 ± 510.2 | 309.8 ± 477.8 | | Walker | -6.0 ± 0.8 | -6.3 ± 0.7 | -6.4 ± 0.4 | $\mathbf{-6.08} \pm 0.6$ | -6.3 ± 0.4 | -5.2 ± 1.5 | | Halfcheetah | 1845.8 ± 600.9 | $\boldsymbol{1965.3 \pm 839.5}$ | 1265.0 ± 440.8 | 1861.6 ± 605.5 | 1355.0 ± 335.6 | $\textbf{1643.6} \pm \textbf{712.5}$ | #### References - 1. Hovakimyan, Naira, and Chengyu Cao. \mathcal{L}_1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. Society for Industrial and Applied Mathematics, 2010. - 2. Khojasteh, Mohammad Javad, Vikas Dhiman, Massimo Franceschetti, and Nikolay Atanasov. "Probabilistic Safety Constraints for Learned High Relative Degree System Dynamics." In Learning for Dynamics and Control, pp. 781-792. PMLR, 2020. - 3. Taylor, Andrew J., Victor D. Dorobantu, Hoang M. Le, Yisong Yue, and Aaron D. Ames. "Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems." In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6878-6884. IEEE, 2019.