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Problem Setting

• Dataset: S = {Zi}n
i=1 ∈ Zn, sampled i.i.d from µ.

• e.g. regression: Zi = (Xi ,Yi), Xi ∈ Rm, Yi ∈ R.
• Hypothesis: W ∈ W .

• e.g. neural networks: W ⊂ Rd , d : number of tunable
parameters.

• Loss function: ℓ : W ×Z 7→ R+.
• e.g. square loss: ℓ(w , z) = (fw (x)− y)2.

• Learning algorithm: A : Zn 7→ W .
• e.g. stochastic gradient descent (SGD).
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Definition of Generalization Error

• Population risk (test loss) L(w):
• L(w) = EZ [ℓ(w ,Z )].

• Empirical risk (training loss) LS(w):

• LS(w) =
1
n

n∑
i=1

ℓ(w ,Zi).

• Population risk decomposition for W = A(S):
• L(W ) = LS(W ) + (L(W )− LS(W ))︸ ︷︷ ︸

∆(W , S): Generalization Error.

.
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Generalization Analysis Techniques

• Uniform convergence: supw∈W{L(W )− LS(W )}.
• Distribution-agnostic: VC-dimension.
• Distribution-dependent: Rademacher complexity.

• Algorithm-dependent techniques:
• Algorithm stability [Hardt et al., 2016]: How does the learning

algorithm respond to input perturbations?
• Information theory [Xu and Raginsky, 2017]: How much

information is captured by the learning algorithm?
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Comparison of Different Techniques

Method Algorithm Stability Information Theory

Assumptions
Lipschitz Condition

Smoothness
(Strong) Convexity

Subgaussian (Bounded)
Interpolating Regime

Convergence Rate
Non-convex: O( 1√

n )

Convex: O( 1
n )

General: O( 1√
n )

Interpolating: O( 1
n )

Tractability Not computable Computable
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Generalization by Compressed Representation

For some fixed w ∈ W , with probability at least 1 − δ over the
draw of S:

• [Shwartz-Ziv et al., 2018]:

• ∆(w , S) ≤

√
2I(X ,T ) + log

( 1
δ

)
2n .

• [Kawaguchi et al., 2023]:

• ∆(w , S) ≤ O

√
I(X ;T |Y ) + log

( 1
δ

)
n

.
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Existing Problems

• I(X ;T ) can be infinite in some cases.
• e.g. invertible encoder with continuous input: f −1

w : T 7→ X ,
such that f −1

w (fw (X )) = X .
• Workaround: Assume discrete inputs; use lossy activations.

• I(X ;T ) is generally hard to estimate.
• Both X and T are high-dimensional variables.
• Workaround: Monte-Carlo sampling-based estimators; the

reparameterization trick.
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Motivation

Deeper representations are highly compressed.

𝑌𝑌

𝑋𝑋 𝑇𝑇1 𝑇𝑇𝑙𝑙 𝐿𝐿⋯

The loss is basically the last-layer representation.
• I(X ;T1|Y ) ≥ · · · ≥ I(X ;Tl |Y ) ≥ I(X ; L|Y ).
• For deterministic networks: H(L|X ,Y ) = 0.
• H(L|Y ) = H(L|Y )− H(L|X ,Y ) = I(X ; L|Y ) ≤ I(X ;T |Y ).
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Our Results - Loss Entropy

Theorem 1
For some fixed w ∈ W , with probability at least 1 − δ over the
draw of S:

∆(w , S) ≤ O

√
H(L|Y ) + log

(1
δ

)
n

 .

• H(L|Y ) / H(L) is computationally tractable:
• L is 1-dimensional.
• Y is discrete or low-dimensional.
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Experimental Results

Correlation between H(L) / H(L|Y ) and the generalization gap.
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Experimental Results

Pearson correlation analysis between the generalization error and
different information metrics.

Metric Correlation

Num. params. -0.0294
‖W ‖F -0.0871
I(X ;T w ) 0.3712
I(X ;T w |Y ) 0.3842
I(S;W ) 0.0211
I(S;W ) + I(X ;T w ) 0.3928
I(S;W ) + I(X ;T w |Y ) 0.4130
H(Lw ) 0.5611
H(Lw |Y ) 0.6350
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Connecting Loss and Error

Definition of error (regression / binary classification):

E = Y − fw (X ).

• One-step loss functions: L = ϕ(E )
• e.g. square loss L = E 2, absolute loss L = |E |.
• Markov chain: (X ,Y )− E − L.
• Data processing inequality: H(L) ≤ H(E ).

• Loss functions rely on Y : L = ϕ(Yfw (X ))
• e.g. cross-entropy, margin-based loss.
• Markov chain (conditioned on Y ): X − fw (X )− E − L.
• Conditional data processing inequality: H(L|Y ) ≤ H(E |Y ).
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Connecting Loss and Error

Corollary 2
For some fixed w ∈ W , with probability at least 1 − δ over the
draw of S:

∆(w , S) ≤ O

√
H(E ) + log

(1
δ

)
n

 .

Minimum Error Entropy (MEE) enhances generalization!
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Data-independent to Data-dependent

Acquire W = A(S), with probability at least 1 − δ over the draw
of S and W :√

H(L) + log
(1
δ

)
n

w∈W−−−−−−−→
union bound

√
H(L) + log(|W|) + log

(1
δ

)
n︸ ︷︷ ︸

Vacuous!

.

Idea: Use the complexity of losses instead of the hypothesis.
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Problem Setting

The supersample setting [Steinke and Zakynthinou, 2020]:
• Dataset: S̃ = {Z̃i}n

i=1 ∈ Zn×2, Z̃i = {Z̃ 0
i , Z̃ 1

i }.
• Dataset separation: U = {Ui}n

i=1 ∼ Unif({0, 1}n).
• Training set: S̃U = {Z̃Ui

i }n
i=1, test set: S̃U = {Z̃U i

i }n
i=1.

• Hypothesis: W = A(S̃U).
• Loss evaluation: L0

i = ℓ(W , Z̃ 0
i ), L1

i = ℓ(W , Z̃ 1
i ).

• Validation error: ∆(W , S̃) = LS̃U
(W )− LS̃U

(W ).
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Types of Generalization Bounds

• Average-case bounds 7

• EW ,S̃,U

[
∆(W , S̃)

]
≤ · · · .

• Characterize the expected generalization error.
• Insufficient to analyze single training processes.

• High-probability bounds 3
• With high probability, ∆(W , S̃) ≤ · · · .
• Characterize the distribution of generalization error.
• Provide guarantees for single training processes.
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High-probability Generalization Bounds

Acquire W = A(S), with probability at least 1 − δ over the draw
of S, U and W :

• Functional CMI [Harutyunyan et al., 2021]:

• ∆(W , S̃) ≤

√
8I(F ;U|S̃) + 16

nδ .

• F = {fW (Z̃ 0
i ), fW (Z̃ 1

i )}n
i=1.

• Evaluated CMI [Hellström and Durisi, 2022]:

• ∆(W , S̃) ≤

√√√√2ı(R;U|S̃) + 2 log
(√

n
δ

)
n − 1 .

• R = {L0
i , L1

i }n
i=1, ı: information density.
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Existing Problem

• Only applies to bounded loss functions
• Many loss functions (square loss, cross-entropy) are

unbounded, and thus are not covered by existing results.

• Computational intractability
• I(F ;U|S̃) contains high-dimensional variables.
• ı(R;U|S̃) cannot be estimated empirically.
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Our Results - Loss Entropy

Theorem 3
For any λ ∈ (0, 1), with probability at least 1 − δ over the draw of
S, U and W :

∆(W , S̃) ≤
√

2
∑n

i=1(∆Li)2

n

√
H1−λ(R∆) +

1
λ log

(1
δ

)
+ log

(2
δ

)
n .

• ∆Li = L1
i − L0

i , R∆ = {∆Li}n
i=1.

• When λ → 0, Rényi’s entropy satisfies subadditivity:
H(R∆) ≤

∑n
i=1 H(∆Li) ≤

∑n
i=1 H(L0

i ) + H(L1
i ).

Yuxin Dong School of Computer Science and Technology Xi’an Jiaotong University
Rethinking Information-theoretic Generalization: Loss Entropy Induced PAC Bounds 23 / 35



Introduction Data-independent Bounds Data-dependent Bounds Proof Sketch References

Fast-rate Bounds for Bounded and Interpolating Case

Theorem 4
Assume ℓ(·, ·) ∈ [0, κ] and LS̃U

(W ) = 0. Then for any λ ∈ (0, 1),
with probability at least 1 − δ over the draw of S, U and W :

∆(W , S̃) ≤ 2κ
H1−λ(R) + 1

λ log
(1
δ

)
+ log

(4
δ

)
n log 2 .

• Convergence rate: O(1/
√

n) → O(1/n).
• Similarly, by the subadditivity of entropy:

H(R) ≤
∑n

i=1 H(L0
i , L1

i ) ≤
∑n

i=1 H(L0
i ) + H(L1

i ).
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Experimental Results

Comparison between generalization bounds in 3 learning settings:
1. MNIST (Adam), 2. CIFAR10 (SGD), 3. MNIST (SGLD).
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• Binary-KL: lower-bound of the currently tightest
high-probability information-theoretic bound in the literature.
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Main Idea

R is the "bottleneck" of information flow from W to ∆:
• Markov chain: W → R → ∆.

Exhaustively explore every R ∈ R to decouple W and ∆.

Assume R is discrete, define the typical subset:
• Rϵ = {r ∈ R : − logP(R = r)− H(R) ≤ ϵ}.
• P(R /∈ Rϵ) ≤ δ.
• log |Rϵ| ≤ O

(
H(R) + log

(1
δ

))
.

Yuxin Dong School of Computer Science and Technology Xi’an Jiaotong University
Rethinking Information-theoretic Generalization: Loss Entropy Induced PAC Bounds 27 / 35



Introduction Data-independent Bounds Data-dependent Bounds Proof Sketch References

Proof Sketch

𝑅𝑅 𝑅𝑅 ∈ ℛ𝜖𝜖?

∀𝑟𝑟 ∈ ℛ𝜖𝜖, if 𝑅𝑅 = 𝑟𝑟:

Δ ≤ 𝑂𝑂 log 1/𝛿𝛿
𝑛𝑛

ℙ 𝑅𝑅 ∉ ℛ𝜖𝜖 ≤ 𝛿𝛿

Iterate through ℛ𝜖𝜖

if 𝑅𝑅 ∈ ℛ𝜖𝜖:

Δ ≤ 𝑂𝑂 log ℛ𝜖𝜖 /𝛿𝛿
𝑛𝑛

if 𝑅𝑅 ∈ ℛ𝜖𝜖:

Δ ≤ 𝑂𝑂 𝐻𝐻 𝑅𝑅 +log 1/𝛿𝛿
𝑛𝑛

Δ ≤ 𝑂𝑂 𝐻𝐻 𝑅𝑅 +log 1/𝛿𝛿
𝑛𝑛

Yes

No

Concentration Bound
(McDiarmid/Bernstein)

Union Bound

Union Bound

log ℛ𝜖𝜖 ≤ 𝑂𝑂 𝐻𝐻 𝑅𝑅 + log 1
𝛿𝛿

Yuxin Dong School of Computer Science and Technology Xi’an Jiaotong University
Rethinking Information-theoretic Generalization: Loss Entropy Induced PAC Bounds 28 / 35



Introduction Data-independent Bounds Data-dependent Bounds Proof Sketch References

Discretizing Continuous Losses

Most loss functions are continuous (square loss, cross-entropy),
and require discretization before evaluating the bounds.

• Select bin size b > 0.
• Rounding function: ϕb(L) = b × argmini∈N |ib − L|.
• Discretized loss: L̂ = ϕb(L + ξ), ξ ∼ Unif([−b

2 ,
b
2 ]).

Lemma 5
Given test losses L1, · · · , Ln, with probability at least 1 − δ,

1
n

n∑
i=1

Li −
1
n

n∑
i=1

L̂i ≤ b

√
2 log

(1
δ

)
n .
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Future Works

• How to control test loss entropy?

• Reduce the required number of validation samples.
• Leave-one-out settings and beyond.

• Other types of complexity measures.
• Mutual information, Maximal leakage.
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Thank You
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