# AttEXplore: Attribution for Explanation with model parameters eXploration

### Zhiyu Zhu, Huaming Chen, Jiayu Zhang, Xinyi Wang, Zhibo Jin, Jason Xue, Flora D Salim



#### Introduction to DNN Challenges

- The critical role of DNNs in high-stakes domains.
- The need for reliability and interpretability.
- The complexity of interpreting non-linear, complex models.

What is AttEXplore?

- AttEXplore is a method integrating transferable attack techniques with attribution for DNNs.
- The goal of AttEXplore to provide more accurate and robust feature representation.
- The more important features are, the more likely they are to influence model decisions.

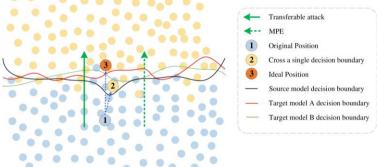



Figure 1: Decision boundaries

#### Model Parameter Exploration and Methods

- Definition of Model Parameter Exploration (MPE): Investigating how slight changes to model parameters or inputs affect the model's decision output.
- Example:  $y = w^T x$  with w = [1, 2] and x = [3, 4]
- Methods to Explore:
  - Altering input features x (e.g., x = [0, 4])
  - Modifying parameters w (e.g., w = [0, 2])
- Both methods are shown to have equivalent effects on model decisions.

Applying MPE via Adversarial Methods and Attribution

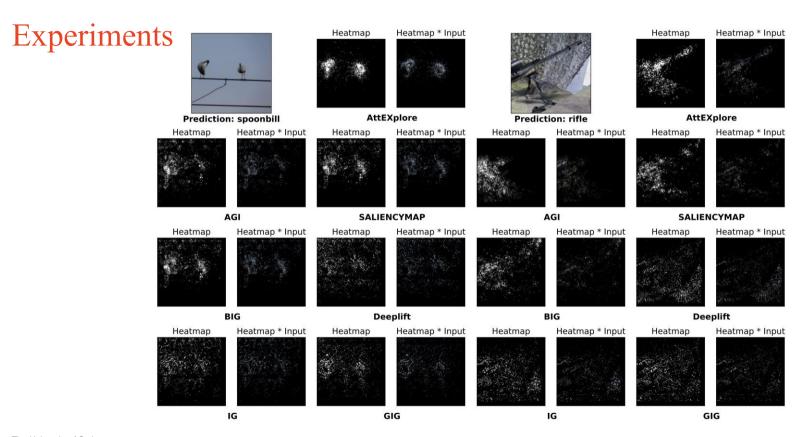
- Connection of MPE with Transferable Adversarial Attacks:
  - Input transformations mimic MPE, aiming to cross decision boundaries.
- Attribution with MPE (AttEXplore):
  - Novel approach: Nonlinear integration path formula:

$$A = \int \bigtriangleup x^t \odot g(x^t) dt$$



Figure 2: Our nonlinear integration path

Frequency-based Input Feature Alterations Method


- Applying DCT and IDCT for exploring model parameters in the frequency domain.
- Equations:

$$\begin{aligned} x_{f_i}^t &= IDCT \left( DCT \left( x^t + N(0,1) \cdot \frac{\epsilon}{255} \right) * N(1,\sigma) \right) \\ & \triangle x^t = \eta \cdot sign(\frac{1}{N} \sum_{i=1}^N \frac{\partial L(x_{f_i}^t, y)}{\partial x_{f_i}^t}) \end{aligned}$$

- Our algorithm satisfies Axioms of Sensitivity and Implementation Invariance



- Dataset: ImageNet
- Models: Inception-v3, ResNet-50, and VGG16
- Baselines: AGI, BIG, DeepLIFT, GIG, EG, IG, Fast-IG, SM, SG, Grad-CAM
- Metrics: Insertion Score, Deletion Score, INFD score



The University of Sydney

Figure 1: Visualization Results of our AttEXplore and Other Competitive Methods

| <b>T</b> |     |
|----------|-----|
| Experime | ntc |
| LAPUIII  |     |

| Methods     | Inception-v3 |        | ResNet-50 |        | VGG-16 |        |
|-------------|--------------|--------|-----------|--------|--------|--------|
|             | INS          | DEL    | INS       | DEL    | INS    | DEL    |
| Grad-CAM    | 0.4496       | 0.1084 | 0.2541    | 0.0942 | 0.3169 | 0.0841 |
| BIG         | 0.3563       | 0.0379 | 0.2272    | 0.0415 | 0.1762 | 0.0303 |
| SaliencyMap | 0.3974       | 0.0422 | 0.256     | 0.048  | 0.2089 | 0.0323 |
| DeepLift    | 0.216        | 0.0314 | 0.1246    | 0.0256 | 0.0827 | 0.0157 |
| GIG         | 0.2584       | 0.0239 | 0.1308    | 0.0184 | 0.0859 | 0.0142 |
| EG          | 0.2364       | 0.1656 | 0.256     | 0.2178 | 0.1959 | 0.1797 |
| Fast-IG     | 0.146        | 0.0338 | 0.0889    | 0.0315 | 0.0623 | 0.0213 |
| IG          | 0.2268       | 0.0284 | 0.1136    | 0.0247 | 0.0701 | 0.0173 |
| SG          | 0.301        | 0.023  | 0.2357    | 0.0202 | 0.1423 | 0.015  |
| AGI         | 0.4243       | 0.0439 | 0.3796    | 0.0465 | 0.2585 | 0.0319 |
| AttEXplore  | 0.4732       | 0.0297 | 0.4197    | 0.0293 | 0.3186 | 0.0226 |
|             |              |        |           |        |        |        |

| Method     | FPS     |  |  |  |
|------------|---------|--|--|--|
| BIG        | 3.3798  |  |  |  |
| AGI        | 0.8818  |  |  |  |
| IG         | 19.7461 |  |  |  |
| SG         | 19.4942 |  |  |  |
| GIG        | 2.2814  |  |  |  |
| AttEXplore | 47.2805 |  |  |  |

Table 2: FPS Results for Analysis of Time Complexity

Table 1: Insertion&Deletion score comparison of AttEXplore and other competitive baselines

#### Conclusion

- 1. We uncover, for the first time, the decision boundary exploration approaches of attribution and transferable attacks are consistent.
- 2. We propose a novel attribution algorithm by performing Attribution for Explanation with Model Parameter Exploration based on transferable attacks, named AttEXplore.
- 3. We conduct extensive experiments to verify the effectiveness of our AttEXplore.
- 4. We release the code of AttEXplore at: <u>https://github.com/LMBTough/ATTEXPLORE</u>

## Thanks you