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Low-energy conformations

- Finding low-energy conformations is crucial in - The transition of a molecule from any given
computer-aided drug design conformation to a low-energy conformation is

, , known as relaxation or geometry optimization
- Important molecular properties that define a

molecule’s medicinal potential are estimated in
low-energy conformations
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Traditional methods for geometry optimization

-~ We denote the t-th conformation in the - To obtain reasonably accurate interatomic
optimization trajectory as s; = {X;, z}, where X; is forces, we employ DFT-based physical
the matrix of atoms’ coordinates, and z is the simulators!!

vector of atomic numbers A :
- Can scale as O(N*), where N is the number of

- Traditional methods iteratively optimize the electrons in the system
geometry using interatomic forces F;, as anti-

gradients
I—» Computationally expensive!

Ser1 = St + aOpt(F™"
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[1] Smith, Daniel GA, et al. "PSl4 1.4: Open-source software for high-throughput quantum chemistry." The Journal of chemical physics 152.18 (2020).




Neural network potentials for geometry optimization

- A Neural Network Potential (NNP) is trained to - Iterative optimization with NNP is ~2000 times

predict energy based on conformation: faster in terms of wall-time

ENNP — £(5.. 0
St f(s6;0) - Requires a lot of datal!

- To predict the forces we take the gradient of the
energy w.r.t. atoms’ coordinates!’ 21
FNNP — _ af(st; 9)
St d X;

|—> Requires a lot of training data!
— NNP
St+1 = St + aOpt(F
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[1] Schutt, Kristof T., et al. "Schnet-a deep learning architecture for molecules and materials." The Journal of Chemical Physics 148.24 (2018).
[2] Schiitt, Kristof, Oliver Unke, and Michael Gastegger. "Equivariant message passing for the prediction of tensorial properties and molecular
spectra." International Conference on Machine Learning. PMLR, 2021.




Training NNPs for the task of geometry optimization

10—3 i

Hartree?
A2
=
o
L

10—5 i

Forces MSE,

10—6 ]

fbaseline
ftraj - 10k
ftraj — 100k
ftraj - 500k

—

\
—

2 100

101
Evaluation step

102

NNPs trained on publicly available datasets!! 2
suffer from a distribution shift when used in the
optimization task

To show this, we run iterative optimization with
NNP and evaluate forces predicted at each step
with DFT-based oracle. The prediction error
increases throughout the relaxation

To alleviate the distribution shift, we extend the
training dataset with ground-truth optimization
trajectories obtained with DFT-based oracle. The
prediction error gradually decreases with the
amount of additional training data



Motivation and the goal
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We show that it requires approximately 500,000
additional conformations to reach optimization
quality comparable with the DFT-based oracle

For the molecules from the nablaDFT dataset

and our selected physical simulator, this amounts
to about 9 CPU-years of compute

->

Our primary goal is to reduce the
amount of additional data while
maintaining optimization quality
comparable to the DFT-based physical
simulator.
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GOLF

We use the NNP to perform iterative optimization.

After every step, we estimate the energy in s;,; with
the surrogate oracle (RDKit'sl! MMFF in our work).

[1] RDKit: Open-source cheminformatics. https://www.rdkit.org

Get next conformation using forces
predicted by NNP as anti-gradients
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GOLF

Then we estimate whether the energy has decreased. If the energy
decreased, we continue the optimization; otherwise, we consider the NNP’s
prediction of interatomic forces incorrect and add the conformation from

the previous step to the training dataset.

MMFF
Abii™ >0 Calculat d truth DFT [DFT
alculate ground tru Add Est , FSt to

DFT g DFT
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Str1 = St + aOpt(FYNY
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Results

-~ We test the algorithm on a subset of nablaDFTM
dataset Dtest (~20000 conformations for ~10000
molecules)

—~ We use the following metrics: Chemical
1 precison,
Eresidual — EDFT _ pDFT kcal/mol
|D test | ST optimal
septest l
1
— DFT DFT
PClsuccess = |Dtest| z I[(EST _ Eoptimal) < 1]
septest

- Training NNPs with GOLF reduces the amount of
additional conformations required to match the
optimization quality of DFT from 500,000 to 10,000

Ersp(kcal/mol) | pct(%) 1
fbaseline R.6 .2
ftraj-SOOk 0.5 73 .4
fGOLF-lOk 0.5 77.3
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