

QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models

Jing Liu^{1,2}, Ruihao Gong^{2,3}, Xiuying Wei^{2,4}, Zhiwei Dong^{2,5}, Jianfei Cai¹, Bohan Zhuang^{1†}

¹Zip Lab, Monash University ²SenseTime Research ³Beihang University ⁴School of Computer and Communication Sciences, EPFL, ⁵University of Science and Technology Beijing

Large Language Models

Large Language Models (LLMs) have achieved unprecedented advancements in NLP.

Vaswani et al. Attention Is All You Need. NeurIPS 2017.

Emergent Abilities of LLM

LLMs suddenly gain new emergent abilities as they grow.

Wei et al. Emergent Abilities of Large Language Models. TMLR 2022.

LLM Deployment Requirements

The substantial computational demands and vast model sizes of LLM necessitates lot of GPUs during inference.

Large Language Models: A New Moore's Law? (huggingface.co)

Network Quantization

Network quantization represents the weights and activations with low-precision, resulting in lower memory

footprint and faster inference.

Park, et al. Weighted-Entropy-Based Quantization for Deep Neural Networks. CVPR 2017. Liu et al. OLLM – ICLR 2024

Quantization-aware Training vs Post-training Quantization

QAT suffers from unbearable training costs, rendering it impractical for the efficient deployment of LLMs.

Gholami, *et al.* A Survey of Quantization Methods for Efficient Neural Network Inference. Low-Power Computer Vision 2022. Liu et al. QLLM – ICLR 2024

Outlier issues in Post-training Quantization

□ Activation outliers emerge when scaling up beyond 6.7B parameters.

□ The activation outliers in specific channels make existing quantization methods less effective.

Tim, *et al.* LLM.int8 (): 8-bit matrix multiplication for transformers at scale. NeurIPS 2022. Xiao, *et al.* SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. ICML 2023. Liu et al. QLLM – ICLR 2024

Existing Quantization Methods

Existing quantization methods smoothing activation outliers by transitioning the magnitudes from activations to weights through a mathematically equivalent transformation.

□ For exceeding pronounced activation outliers, existing methods offers only limited alleviation.

Xiao, et al. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. ICML 2023.

QLLM: Accurate and Efficient Low-bitwidth Quantization for LLMs

- □ QLLM handle the outlier issue by employing **a gradient-free channel reassembly** that redistributes the large activation magnitude of the outlier channels across the channel.
- □ QLLM further improve the performance of the quantized LLM through a efficient gradient-based error correction, which learns low-rank parameters to counteract quantization error.

Channel Reassembly

□ Channel disassembly: **decompose the input outlier channels** into several sub-channels, which reduces outlier magnitude and make the activations more quantization-friendly.

- □ Channel assembly: **merge similar input channels** to keep the original channel count.
- □ Adaptive reassembly: adaptively **determine the appropriate reassembly ratio** for each layer.

Channel Disassembly

 \Box Channel disassembly: decompose outlier channel channel M into $\frac{\mathbf{x}_M}{T}$ and replicate this channel T times

$$\mathbf{y}_{k} = \sum_{i=1}^{M-1} \mathbf{x}_{i} \mathbf{W}_{ik} + \underbrace{\frac{\mathbf{x}_{M}}{T} \mathbf{W}_{Mk} + \dots + \frac{\mathbf{x}_{M}}{T} \mathbf{W}_{Mk}}_{T \text{ times}}$$

W

+1.6

+1.2

 \square How to determine the sub-channel numbers? $T = \lceil \max(|\mathbf{x}_M|) / \theta \rceil$ W

Decomposed \mathbf{X} Х channels +0.5 -0.3 Channel +1.2 +1.6 Disassembly -0.1 +0.4 +2.6 +1.2 -0.2 +6.6 +0.5 -0.3 +1.2 -0.2 +2.6 +2.2+2.2 +2.2 -2.8 +0.3 -1.8 +7.5 -0.1 -2.8 +0.3 -1.8 +2.5 +2.5 +2.5 +0.4 +0.2 -0.6 +0.2 -0.6 $\theta = 3.0, T = \left[\max\left(\left| \mathbf{x}_M \right| \right) / \theta \right] = 3$ +0.2 -0.6 +0.2 -0.6

Channel Assembly

□ Merge similar channels (ignore outlier channels) with the aim of reducing the information loss.

$$D(i,j) = \left\| \mathbf{x}_i \mathbf{W}_{ik} + \mathbf{x}_j \mathbf{W}_{jk} - \frac{\mathbf{x}_i + \mathbf{x}_j}{2} (\mathbf{W}_{ik} + \mathbf{W}_{jk}) \right\|_2^2 = \left\| \frac{\mathbf{x}_i (\mathbf{W}_{ik} - \mathbf{W}_{jk})}{2} + \frac{\mathbf{x}_j (\mathbf{W}_{jk} - \mathbf{W}_{ik})}{2} \right\|_2^2,$$
Aggregated channels

 \Box How to determine which channels to aggregate to reduce the total number by T - 1? Bipartite soft matching.

Bolya, et al. Token Merging: Your ViT But Faster. ICLR 2023.

Adaptive Reassembly

Question: how to determine reassembly ratio?

- □ Selecting a high value for T with a small θ substantially reduces outlier magnitudes and benefits quantization, while resulting a large increase in channel merging error.
- □ Choosing a small T with a large θ will not increase too much channel merging loss but may cause significant quantization errors due to the remaining outliers.
- □ Solution: using grid search to find the optimal θ by minimizing the reassembly error between the original output activations and their counterparts generated with the reassembled input activations.

Efficient Error Correction

- □ Learns two low-rank parameters $\mathbf{A} \in \mathbb{R}^{M \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times N}$ for each projection layers by minimizing the block-wise reconstruction error.
- □ Perform block-wise reconstruction sequentially rather than parallel to mitigate accumulated error.

LLaMA-1 Results

Table. Performance comparisons of different methods for weights and activationsquantization on LLaMA-1 model family.

Model	#Bits	Method		$\mathrm{PPL}\downarrow$				Ac	curacy (%)↑				
moder	- Ditto	method	WikiText2	C4	Avg.	PIQA	ARC-e	ARC-c	HellaSwag Winogrande A		Avg.		
	W16A16	-	5.68	7.08	6.38	77.37	52.48	41.38	72.99	66.93	62.23		
	W6A6	SQ	6.15	7.61	6.88	76.65	53.11	40.10	71.52	61.88	60.65		
	W6A6	OS+	5.90	-	-	76.82	51.35	41.13	71.42	65.98	61.34		
	W6A6	OmniQuant	5.96	7.43	6.70	77.09	51.89	40.87	71.61	65.03	61.30		
	W6A6	QLLM	5.89	7.34	6.62	77.26	52.02	41.04	71.40	65.19	61.38		
II MA 17D	W4A8	QLLM	5.96	7.49	6.73	76.17	50.84	40.02	70.75	66.22	60.80		
LLawiA-1-/D	W4A4	sq	52.85	104.35	78.60	49.80	30.40	25.80	27.40	48.00	36.28		
	W4A4	LLM-QAT	-	-	-	51.50	27.90	23.90	31.10	51.90	37.26		
	W4A4	LLM-QAT+SQ	-	-	-	55.90	35.50	26.40	47.80	50.60	43.24		
	W4A4	OS+	40.32	-	-	62.73	39.98	30.29	44.39	52.96	46.07		
	W4A4	OmniQuant	11.26	14.51	12.89	66.15	45.20	31.14	56.44	53.43	50.47		
	W4A4	QLLM	9.65	12.29	10.97	68.77	45.20	31.14	57.43	56.67	51.84		
	W16A16	-	3.56	5.62	4.59	80.85	58.75	46.25	80.73	77.11	68.74		
	W6A6	SQ	4.00	6.08	5.04	77.97	54.67	44.62	77.51	72.61	65.48		
	W6A6	OS+	-	-	-	79.67	55.68	45.22	78.03	73.95	66.51		
	W6A6	OmniQuant	3.75	5.82	4.79	81.01	58.12	46.33	79.91	75.69	68.21		
LLoMA 165P	W6A6	QLLM	3.73	5.80	4.77	80.14	57.79	45.05	79.74	74.59	67.46		
LLawiA-1-05B		QLLM	3.78	8.82	6.30	80.14	58.59	46.42	79.71	74.66	67.90		
	W4A4	sq	112.02	118.96	115.49	61.81	40.15	32.08	46.19	50.83	46.21		
	W4A4	OS+	32.60	-	-	68.06	43.98	35.32	50.73	54.30	50.48		
	W4A4	OmniQuant	9.17	11.28	10.23	71.81	48.02	35.92	66.81	59.51	56.41		
	W4A4	QLLM	6.87	8.98	7.93	73.56	52.06	39.68	70.94	62.9	59.83		

□ QLLM achieves significantly higher zero-shot accuracy and much lower perplexity than the contenders.

LLaMA-2 Results

Table. Performance comparisons of different methods for weights and activationsquantization on LLaMA-2 model family.

Model	#Bits	Method	F	PPL↓				Aco	curacy (%) ↑		
	1010	mounou	WikiText2	C4	Avg.	PIQA	ARC-e	ARC-c	HellaSwag	Winogrande	nogrande Avg. 67.25 62.22 66.14 61.40 65.19 61.35 64.09 61.25 65.59 - 49.57 - 51.3 45.93
	W16A16	-	5.47	6.97	6.22	76.82	53.62	40.53	72.87	67.25	62.22
	W6A6	SQ	6.37	7.84	7.11	75.57	53.62	39.93	71.76	66.14	61.40
	W6A6	OS+	-	-	-	76.22	52.74	40.70	71.89	65.19	61.35
	W6A6	OmniQuant	5.87	7.48	6.68	76.77	52.90	40.61	71.86	64.09	61.25
LLoMA 2 7B	W6A6	QLLM	5.72	7.31	6.52	77.48	52.99	39.33	71.38	65.98	61.43
LLawiA-2-7D	W4A8	QLLM	5.91	7.50	6.71	76.11	51.73	39.33	71.27	65.59	60.81
		SQ	101.77	93.21	97.49	60.17	35.23	27.13	37.08	49.57	41.84
	W4A4	OS+	-	-	-	63.11	39.10	28.84	47.31	51.3	45.93
	W4A4	OmniQuant	14.61	18.39	16.50	65.94	43.94	30.80	53.53	55.09	49.86
	W4A4	QLLM	11.75	13.26	12.51	67.68	44.40	30.89	58.45	56.59	51.60
	W16A16	-	3.32	5.52	4.42	81.01	59.68	47.95	80.87	76.95	69.29
	W6A6	SQ	3.69	5.88	4.79	79.87	57.32	45.65	79.01	74.03	67.18
	W6A6	OS+	-	-	-	79.33	59.09	47.18	79.46	75.06	68.02
	W6A6	OmniQuant*	3.71	5.91	4.81	80.20	60.27	46.84	80.55	76.01	68.77
LL MA 2 70B	W6A6	QLLM	3.55	5.76	4.66	80.63	59.01	45.99	79.64	75.37	68.13
LLawA-2-70B	W4A8	QLLM	3.6	5.76	4.68	80.79	58.59	47.44	79.42	75.77	68.40
	W4A4	SQ	26.01	34.61	30.31	64.09	41.84	32.00	54.21	51.07	48.64
	W4A4	OS+	-	-	-	66.16	42.72	34.90	56.93	52.96	50.73
	W4A4	OmniQuant*	41.10	54.33	47.72	52.99	31.14	23.89	33.88	52.01	38.78
	W4A4	QLLM	7.00	8.89	7.95	74.27	50.59	37.2	71.62	59.43	58.62

QLLM significantly outperforms the state-of-the-art post-training quantization (PTQ) methods,

demonstrating a substantial margin of improvement in 4-bit quantization. Liu et al. QLLM – ICLR 2024

Effect of different components in channel reassembly

Table. Perplexity results of different components in channel reassembly.

CD	CA	СР	Adaptive	γ		LLaMA-1-13B					
02	0.1	01	Thupart	/	WikiText2	PTB	C4	Avg.			
\checkmark				0.00	189.35	539.59	303.45	344.13			
\checkmark				0.01	8.31	14.44	10.74	11.16			
\checkmark				0.03	8.01	13.52	10.27	10.60			
\checkmark				0.05	7.85	13.38	10.13	10.45			
\checkmark				0.07	7.81	13.35	10.11	10.42			
\checkmark	\checkmark			0.01	8.68	15.16	11.12	11.65			
\checkmark	\checkmark			0.03	8.72	14.99	11.03	11.58			
\checkmark	\checkmark			0.05	8.95	15.34	11.29	11.86			
\checkmark	\checkmark			0.07	9.39	15.98	11.84	12.40			
\checkmark		\checkmark		0.01	8.98	16.34	11.37	12.23			
\checkmark		\checkmark		0.03	9.51	18.29	12.7	13.50			
\checkmark		\checkmark		0.05	9.60	18.11	13.4	13.70			
\checkmark		\checkmark		0.07	11.23	21.61	19.79	17.54			
\checkmark	\checkmark	-	\checkmark	-	8.41	14.38	10.58	11.12			

□ Notation:

- **CD**: channel disassembly
- □ CA: channel assembly
- **CP**: channel pruning
- □ Adaptive: Adaptive strategy
- \Box γ : channel expansion ratio
- **CD** makes activations more quantization-friendly by **decomposing the outlier channels**.
- □ CA retains the original channel count with a less performance drop compared to channel pruning.
- \Box Our adaptive strategy is able to find optimal θ with **near-lossless performance**.

Channel Reassembly vs. Other Outlier Handling Methods.

Table. Performance comparisons of our channel reassembly (CR) with previous outlier handling methods.

Model	#Bits	Method	PIQA	ARC-e	ARC-c	HellaSwag	Winogrande	Avg.
	W6A6	SQ	76.65	53.11	40.10	71.52	61.88	60.65
	W6A6	OS+	76.82	51.35	41.13	71.42	65.98	61.34
	W6A6	CR	76.88	52.31	40.87	71.37	64.33	61.15
LLawiA-1-/D	W4A4	- SQ -	49.80	30.40	25.80	27.40	48.00	36.28
	W4A4	OS+	62.73	39.98	30.29	44.39	52.96	46.07
	W4A4	CR	66.92	42.55	32.34	54.31	50.04	49.23
	W6A6	SQ	77.80	56.36	42.58	75.11	68.11	63.99
	W6A6	OS+	78.29	56.90	43.09	75.09	69.22	64.52
	W6A6	CR	78.02	56.69	42.41	74.70	70.01	64.37
LLaMA-1-13D	$\overline{W4A4}$	$\bar{s}\bar{q}$	55.55	34.51	26.71	41.56	48.70	41.41
	W4A4	OS+	63.00	40.32	30.38	53.61	51.54	47.77
	W4A4	CR	67.57	43.77	31.48	60.78	56.04	51.93

□ All methods exhibit **comparable performance** at 6-bit quantization.

□ Channel reassembly significantly surpasses other methods by a large margin at 4-bit quantization.

Effect of Efficient Gradient-based Error Correction

Table. Comparisons between efficient error correction (EEC) and tuning quantized weights directly (TQW) for 4-bit LLaMA-1-65B.

#Attn-FFN Block	Method	WikiText2	PTB	C4	Avg.	Training Time (GPU Hours)	GPU Memory (GB)
1	TQW	6.34	17.61	9.56	11.17	12.16	30.84
1	EEC	8.31	13.77	10.76	10.95	7.79	19.00
2	TQW	6.25	11.18	8.56	8.66	12.13	52.45
2	EEC	7.62	11.47	9.39	9.49	7.79	28.60
4	TQW	-	-	-	-	-	OOM
4	EEC	6.87	11.36	8.98	9.07	7.77	47.71

□ Compared with TQW, EEC significantly reduces training costs and GPU memory usage while delivering comparable performance.

□ The reduced GPU memory demand allows EEC to quantize LLaMA-1-65B on a single 24GB consumergrade GPU, such as the NVIDIA RTX 4090.

Inference Efficiency

Table. Inference throughput comparisons using a 2048-token segment on RTX 3090 GPUs: 1x GPU for LLaMA-1-7B and 2x GPUs for LLaMA-1-13B.

Model	Method	Throughput (tokens/s)
	FP16	3252
	W8A8	5676
LLaMA-1-7B	W4A16	5708
	W4A4	6667
	QLLM	6385
	FP16	1910
	W8A8	3179
LLaMA-1-13B	W4A16	2026
	W4A4	3873
	QLLM	3730

Table. Inference throughput (tokens/s) comparisons ofdifferent models. The throughput is measured with a2048-token segment on a NVIDIA RTX 3090 GPUs

Model	Method	CD	CA	Adaptive	γ	Inference Throughput (tokens/s)
	FP16				-	3252
	W8A8				-	5676
	W4A16				-	5708
	W4A4				-	6667
	W4A4	 √			0.01	6322
LLaMA-1-7B	W4A4	\checkmark			0.05	6315
	W4A4	\checkmark			0.1	6310
	W4A4	 √			0.01	6365
	W4A4	\checkmark	\checkmark		0.05	6334
	W4A4	\checkmark	\checkmark		0.1	6318
	W4A4	~~~	~ √			6385

- □ With efficient CUDA and Triton kernels, our 4-bit QLLM only incurs **4% additional cost** relative to W4A4 but achieves a notable **1.96× speedup** over FP16.
- □ Channel disassembly results in **additional costs** due to the extra channels (not a multiples like 32 or 64).
- □ Channel assembly **maintains original channel count** and **mitigating the extra costs** from disassembly.

The Expansion Ratio Results of 4-bit LLaMA-1-13B

Our adaptive strategy allocates higher expansion ratios to the shallower MSA layers and to the deeper down projection layer in the FFN, which indicates that these layers possess a greater number of outliers.

Thanks for Watching

Please refer to our paper and code for more details

Q & A

