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Large Language Models

Large Language Models (LLMs) have achieved unprecedented advancements in NLP.
Image Source: OpenAI Admin Panel

Vaswani et al. Attention Is All You Need. NeurIPS 2017.
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Emergent Abilities of LLM

LLMs suddenly gain new emergent abilities as they grow.
Wei et al. Emergent Abilities of Large Language Models. TMLR 2022.
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LLM Deployment Requirements

The substantial computational demands and vast model sizes of LLM necessitates lot of GPUs during inference.

Large Language Models: A New Moore's Law? (huggingface.co)

q Serving a 175B GPT-3 model at least requires

q 80GB NVIDIA A100 GPUs

q 40GB NVIDIA A40 GPUs

https://huggingface.co/blog/large-language-models
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Network Quantization

Network quantization represents the weights and activations with low-precision, resulting in lower memory 

footprint and faster inference.

q Linear quantization:

Xq = quant(X) = clamp
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Park, et al. Weighted-Entropy-Based Quantization for Deep Neural Networks. CVPR 2017.
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Quantization-aware Training vs Post-training Quantization

QAT suffers from unbearable training costs, rendering it impractical for the efficient deployment of LLMs.

Gholami, et al. A Survey of Quantization Methods for Efficient Neural Network Inference. Low-Power Computer Vision 2022.

Training Cost: High😫 Training Cost: Low😁
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Outlier issues in Post-training Quantization

q Activation outliers emerge when scaling up beyond 6.7B parameters.

q The activation outliers in specific channels make existing quantization methods less effective.
Tim, et al. LLM.int8 (): 8-bit matrix multiplication for transformers at scale. NeurIPS 2022.
Xiao, et al. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. ICML 2023.
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Existing Quantization Methods

q Existing quantization methods smoothing activation outliers by transitioning the magnitudes from 

activations to weights through a mathematically equivalent transformation.

q For exceeding pronounced activation outliers, existing methods offers only limited alleviation.
Xiao, et al. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. ICML 2023.
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QLLM: Accurate and Efficient Low-bitwidth Quantization for LLMs

q QLLM handle the outlier issue by employing a gradient-free channel reassembly that redistributes the 

large activation magnitude of the outlier channels across the channel. 

q QLLM further improve the performance of the quantized LLM through a efficient gradient-based error 

correction, which learns low-rank parameters to counteract quantization error.
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Channel Reassembly

q Channel disassembly: decompose the input outlier channels into several sub-channels, which reduces 

outlier magnitude and make the activations more quantization-friendly. 

q Channel assembly: merge similar input channels to keep the original channel count.

q Adaptive reassembly: adaptively determine the appropriate reassembly ratio for each layer.
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Channel Disassembly

q Channel disassembly: decompose outlier channel channel       into        and replicate this channel     times

q How to determine the sub-channel numbers?    
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q Merge similar channels (ignore outlier channels) with the aim of reducing the information loss.

q How to determine which channels to aggregate to reduce the total number by           ? Bipartite soft matching. 

Channel Assembly
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Aggregated channels

T − 1

Step 1: Assign
Channels to Set A 

or Set B

Step 2: For each channel in Set 
A, construct an edge to its most 

similar counterpart in Set B 

Step 3: Select the 𝑇 −
	1 most similar edges. 

Step 4: Aggregate the 
channels that remain 

connected.

Step 5: Concatenate the 
two sets to form the 

assembled channel set.
Bolya, et al. Token Merging: Your ViT But Faster. ICLR 2023.
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q Question: how to determine reassembly ratio?

q Selecting a high value for     with a small    substantially reduces outlier magnitudes and benefits 

quantization, while resulting a large increase in channel merging error.

q Choosing a small     with a large    will not increase too much channel merging loss but may cause 

significant quantization errors due to the remaining outliers.

q Solution: using grid search to find the optimal    by minimizing the reassembly error between the original 

output activations and their counterparts generated with the reassembled input activations.

Adaptive Reassembly

T θ

T θ

θ
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q Learns two low-rank parameters                     and                    for each projection layers by minimizing the 

block-wise reconstruction error.

q Perform block-wise reconstruction sequentially rather than parallel to mitigate accumulated error.

Efficient Error Correction
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q QLLM achieves significantly higher zero-shot accuracy and much lower perplexity than the contenders.

LLaMA-1 Results
Table. Performance comparisons of different methods for weights and activations 
quantization on LLaMA-1 model family.
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q QLLM significantly outperforms the state-of-the-art post-training quantization (PTQ) methods,

demonstrating a substantial margin of improvement in 4-bit quantization.

LLaMA-2 Results
Table. Performance comparisons of different methods for weights and activations 
quantization on LLaMA-2 model family.
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q CD makes activations more quantization-friendly by decomposing the outlier channels. 

q CA retains the original channel count with a less performance drop compared to channel pruning.

q Our adaptive strategy is able to find optimal 𝜃 with near-lossless performance.

Effect of different components in channel reassembly 
Table. Perplexity results of different components in channel reassembly. 

q Notation:

q CD: channel disassembly

q CA: channel assembly

q CP: channel pruning

q Adaptive: Adaptive strategy

q 𝛾: channel expansion ratio
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q All methods exhibit comparable performance at 6-bit quantization.

q Channel reassembly significantly surpasses other methods by a large margin at 4-bit quantization.

Channel Reassembly vs. Other Outlier Handling Methods.
Table. Performance comparisons of our channel reassembly (CR) with previous outlier handling methods.
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q Compared with TQW, EEC significantly reduces training costs and GPU memory usage while delivering 

comparable performance.

q The reduced GPU memory demand allows EEC to quantize LLaMA-1-65B on a single 24GB consumer-

grade GPU, such as the NVIDIA RTX 4090.

Effect of Efficient Gradient-based Error Correction 
Table. Comparisons between efficient error correction (EEC) and tuning quantized 
weights directly (TQW) for 4-bit LLaMA-1-65B.
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q With efficient CUDA and Triton kernels, our 4-bit QLLM only incurs 4% additional cost relative to W4A4 

but achieves a notable 1.96× speedup over FP16.

q Channel disassembly results in additional costs due to the extra channels (not a multiples like 32 or 64).

q Channel assembly maintains original channel count and mitigating the extra costs from disassembly.

Inference Efficiency
Table. Inference throughput comparisons using a 
2048-token segment on RTX 3090 GPUs: 1x GPU 
for LLaMA-1-7B and 2x GPUs for LLaMA-1-13B. 

Table. Inference throughput (tokens/s) comparisons of 
different models. The throughput is measured with a 
2048-token segment on a NVIDIA RTX 3090 GPUs 
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q Our adaptive strategy allocates higher expansion ratios to the shallower MSA layers and to the deeper 

down projection layer in the FFN, which indicates that these layers possess a greater number of outliers. 

The Expansion Ratio Results of 4-bit LLaMA-1-13B
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Thanks for Watching
Please refer to our paper and code for more details

Paper CodeQ & A


