
 Milad Aghajohari* Juan Duque* Tim Cooijmans Aaron Courville

Learning with Opponent Q-Learning Awareness (ICLR 2024)

With
LOQA

Without
LOQA

A simple game where naïve Multi-Agent RL fails

A simple game where naïve Multi-Agent RL fails

Wait, what do we mean by naïve Multi-Agent RL?

Naïve Multi-Agent RL

Naïve Multi-Agent RL with Shared Rewards

MARL performance on games

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with
professional players

MARL performance on games

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with
professional players

MARL performance on games

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with
professional players

MARL performance on games

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with
professional players

MARL performance on games

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 3x3 board gameCooperates with
professional players

MARL performance on games

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 3x3 board gameCooperates with
professional players

A simple game where naïve Multi-Agent RL fails

Iterated Prisoner’s Dilemma
Repeated times

● One step of history
● There are 5 possible state: start, CC, CD, DC, DD
● The policy assigns the probability of cooperation given the state
● The policy can just be modeled by 5 logits
● P(C|start), P(C|CC), P(C|CD), P(C|DC), P(C|DD)

Policy via 5 logits

Always Cooperate

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Always Defect

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Always Defect

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

1. Naïve learners with no shared reward learn Always Defect.

2. Naïve learners with shared reward learn Always Cooperate.

Naïve learners learn either AC or AD

● Always Defect exploits Always Cooperate, but does not cooperate well
with itself

● Always Cooperates cooperates with itself, but gets exploited

AD and AC, both are not desirable

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

Tit for Tat

P(C|start) P(C|CC) P(C|CD) P(C|DC) P(C|DD)

1.0

0.0

LOLA: Learning with Opponent Learning Awareness

LOLA: Learning with Opponent Learning Awareness

LOLA: Learning with Opponent Learning Awareness

LOLA: Learning with Opponent Learning Awareness

LOLA learns TFT in IPD

So, what is LOLA’s problem?

The problem with LOLA

1 - Need high learning rate for approximating opponent’s optimization.

2 - Large steps do not approximate optimization of neural networks accurately (at
all!)

3 - Differentiating through explicit optimization steps of opponent is expensive.

Why LOLA, POLA, M-FOS are not scalable?

1-Explicit Computation graph of the optimization (LOLA, POLA)

2-Meta games are expensive (M-FOS)

The Coin Game

The Coin Game

+1

The Coin Game

+1

The Coin Game

The Coin Game

+1

The Coin Game

The Coin Game

+1-2

Always Defect

Always Defect

+1 -2

Always Cooperate

Always Cooperate

Always Cooperate

+1

Tit for Tat

Tit for Tat

Tit for Tat

+1

Tit for Tat

Tit for Tat

+1

Tit for Tat

Tit for Tat

+1-2

Tit for Tat

Tit for Tat

+1 -2

Naïve learners without shared reward learn Always Defect, to always take the coin
no matter the color. This is not cooperative.

Naïve learners with shared reward learn to Always Cooperate, to always not to
take the opponent’s coin. This is exploitable.

Naive RL fails on the coin game

The probability of is given by

Learning with Opponent Q-Learning Awareness (LOQA)
Key observation: The rewards that the agent observes are dependent on the
policy that the opponent plays and vice-versa.

Suppose we observe a trajectory,

Initial distribution
over states

Transition dynamics

Learning with Opponent Q-Learning Awareness (LOQA)
Key observation: The rewards that the agent observes are dependent on the
policy that the opponent plays and vice-versa.

Hence, we can differentiate the value and Q functions of the opponent w.r.t. the
parameters of the agent (and vice-versa) using the reinforce estimator:

In reinforcement learning we aim to optimize the expected return of the agent
given by:

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Intuition: The policy will be
optimized to increase
probability of b2

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Approximated Optimized Opponent’s Policy

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

We make an approximation to
the optimized policy by a
softmax over q-values

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

We make an approximation to
the optimized policy by a
softmax over q-values

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

This softmax is differentiable w.r.t agent
parameters as action-values are differentiable.

Differentiable approximation of the opponent’s policy

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 1.5

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 1.5

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 1.5

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Approximating the opponent’s policy
Key assumption: The policy of the opponent can be approximated as a softmax
over the Q-Values.

We first approximate the Q value with Monte Carlo rollouts:

Then we approximate the opponent’s policy:
Differentiable w.r.t

Non differentiable w.r.t

LOQA is an Actor Critic Algorithm
LOQA’s actor-critic update: Given that we assume control over the opponent’s
policy, a new term emerges in LOQA’s policy gradient.

1. Regular Advantage policy gradient

2. LOQA’s opponent shaping component: Induces the opponent to select
actions that are beneficial to the agent.

1 2

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step

Actual steps of the LOQA algorithm step by step
For curious minds, and anyone who actually wants to implement LOQA

IPD experiments

Coin Game League

Coin Game League

Coin Game League

Coin Game League

Coin Game League

Coin Game League

How does LOQA solve coin game intuitively?

D

C

D

D

How does LOQA solve coin game intuitively?

D

C

D

D

How does LOQA solve coin game intuitively?

D

C

D

D

How does LOQA solve coin game intuitively?

1. Increase probability of defecting after opponent defects.
2. Decrease probability of defecting after opponent

cooperates.

LOQA’s scalability (most important plot)

Back to first slide, Why the world is so
much better with LOQA?

Reciprocity-based Cooperation

So, is the problem solved?

Not yet, there are problems:

1. Number of players > 2
2. Access to opponent’s q-value function is not granted,

sometimes you don’t know the reward of the opponent
3. Continuous action values
4. Scalability to more complex environments (MeltingPot,

RICE-N, Pure-Diplomacy, etc)

So, is the problem solved?

Not yet, there are problems:

1. Number of players > 2
2. Access to opponent’s q-value function is not granted,

sometimes you don’t know the reward of the opponent
3. Continuous action values
4. Scalability to more complex environments (MeltingPot,

RICE-N, Pure-Diplomacy, etc)

So, is the problem solved?

Not yet, there are problems:

1. Number of players > 2
2. Access to opponent’s q-value function is not granted,

sometimes you don’t know the reward of the opponent
3. Continuous action values
4. Scalability to more complex environments (MeltingPot,

RICE-N, Pure-Diplomacy, etc)

So, is the problem solved?

Not yet, there are problems:

1. Number of players > 2
2. Access to opponent’s q-value function is not granted,

sometimes you don’t know the reward of the opponent
3. Continuous action values
4. Scalability to more complex environments (MeltingPot,

RICE-N, Pure-Diplomacy, etc)

So, is the problem solved?

Not yet, there are problems:

1. Number of players > 2
2. Access to opponent’s q-value function is not granted,

sometimes you don’t know the reward of the opponent
3. Continuous action values
4. Scalability to more complex environments (MeltingPot,

RICE-N, Pure-Diplomacy, etc)

Thank You!

