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A simple game where naïve Multi-Agent RL fails
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Wait, what do we mean by naïve Multi-Agent RL?



Naïve Multi-Agent RL



Naïve Multi-Agent RL with Shared Rewards
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Beats professional players Fails in 2 action matrix gameCooperates with 
professional players



MARL performance on games 

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with 
professional players



MARL performance on games 

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with 
professional players



MARL performance on games 

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 2 action matrix gameCooperates with 
professional players



MARL performance on games 

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 3x3 board gameCooperates with 
professional players



MARL performance on games 

Zero-Sum games Fully Cooperative games General-Sum games

Beats professional players Fails in 3x3 board gameCooperates with 
professional players



A simple game where naïve Multi-Agent RL fails



Iterated Prisoner’s Dilemma
Repeated      times



● One step of history
● There are 5 possible state: start, CC, CD, DC, DD
● The policy assigns the probability of cooperation given the state
● The policy can just be modeled by 5 logits
● P(C|start), P(C|CC), P(C|CD), P(C|DC), P(C|DD)

Policy via 5 logits
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1. Naïve learners with no shared reward learn Always Defect.

2. Naïve learners with shared reward learn Always Cooperate.

Naïve learners learn either AC or AD



● Always Defect exploits Always Cooperate, but does not cooperate well 
with itself

● Always Cooperates cooperates with itself, but gets exploited

AD and AC, both are not desirable



Tit for Tat
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LOLA: Learning with Opponent Learning Awareness



LOLA learns TFT in IPD

So, what is LOLA’s problem?



The problem with LOLA

1 - Need high learning rate for approximating opponent’s optimization.

2 - Large steps do not approximate optimization of neural networks accurately (at 
all!)

3 - Differentiating through explicit optimization steps of opponent is expensive.



Why LOLA, POLA, M-FOS are not scalable?

1-Explicit Computation graph of the optimization (LOLA, POLA)

2-Meta games are expensive (M-FOS)
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Tit for Tat



Tit for Tat

+1 -2



Naïve learners without shared reward learn Always Defect, to always take the coin 
no matter the color. This is not cooperative.

Naïve learners with shared reward learn to Always Cooperate, to always not to 
take the opponent’s coin. This is exploitable. 

Naive RL fails on the coin game



The probability of      is given by 

Learning with Opponent Q-Learning Awareness (LOQA)
Key observation: The rewards that the agent observes are dependent on the 
policy that the opponent plays and vice-versa.

Suppose we observe a trajectory,    

Initial distribution 
over states

Transition dynamics



Learning with Opponent Q-Learning Awareness (LOQA)
Key observation: The rewards that the agent observes are dependent on the 
policy that the opponent plays and vice-versa.  

Hence, we can differentiate the value and Q functions of the opponent w.r.t. the 
parameters of the agent (and vice-versa) using the reinforce estimator:

In reinforcement learning we aim to optimize the expected return of the agent 
given by:



Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

Intuition: The policy will be 
optimized to increase 
probability of b2
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Approximated Optimized Opponent’s Policy
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Differentiable approximation of the opponent’s policy
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Q(b1|s) = 1.0

Q(b2|s) = 2.0

Q(b3|s) = -1.0

Q(b4|s) = 0.2

This softmax is differentiable w.r.t agent 
parameters as action-values are differentiable.

Differentiable approximation of the opponent’s policy
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Differentiable approximation of the opponent’s policy
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Differentiable approximation of the opponent’s policy
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Differentiable approximation of the opponent’s policy

Q(b1|s) = 1.0

Q(b2|s) = 1.5
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Approximating the opponent’s policy
Key assumption: The policy of the opponent can be approximated as a softmax 
over the Q-Values.  

We first approximate the Q value with Monte Carlo rollouts:

Then we approximate the opponent’s policy:
Differentiable w.r.t 

Non differentiable w.r.t  



LOQA is an Actor Critic Algorithm
LOQA’s actor-critic update: Given that we assume control over the opponent’s 
policy, a new term emerges in LOQA’s policy gradient.

1. Regular Advantage policy gradient 

2.   LOQA’s opponent shaping component: Induces the opponent to select 
actions that are beneficial to the agent.

1 2



Actual steps of the LOQA algorithm step by step
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Actual steps of the LOQA algorithm step by step



Actual steps of the LOQA algorithm step by step
For curious minds, and anyone who actually wants to implement LOQA



IPD experiments



Coin Game League
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Coin Game League



How does LOQA solve coin game intuitively?
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How does LOQA solve coin game intuitively?

1. Increase probability of defecting after opponent defects.
2. Decrease probability of defecting after opponent 

cooperates.



LOQA’s scalability (most important plot)



Back to first slide, Why the world is so 
much better with LOQA?

Reciprocity-based Cooperation



So, is the problem solved?

Not yet, there are problems:

1. Number of players > 2
2. Access to opponent’s q-value function is not granted, 

sometimes you don’t know the reward of the  opponent
3. Continuous action values
4. Scalability to more complex environments (MeltingPot, 

RICE-N, Pure-Diplomacy, etc)
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Thank You!


