Self-supervised representation learning

from random data projectors k@
g \\\\\\\\\\\\\\\\\\\\K

o /// 3////////// / ////
g

DALHOUSIE

layer6
FACULTY OF

COMPUTER SCIENCE

Yi Sui, Tongzi Wu, Jesse C. Cresswell, Ga W,
George Stein, Xiao Shi Huang, Xiaochen Zhang, Maksims Volkovs

arXiv: 2310.07756
Code: github.com/layer6ai-labs/LER

—



https://arxiv.org/abs/2310.07756
https://github.com/layer6ai-labs/lfr

Self-supervised representation learning

Learn representations from unlabelled data
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LFR (Learning From Randomness)

Domain agnostic representation learning without augmentations
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A good representation should capture useful information that supports

various downstream predictive tasks

Use random data projections to simulate arbitrary downstream tasks
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LFR (Learning From Randomness)

Domain agnostic representation learning without augmentations

o A good representation should capture useful information that supports
various downstream predictive tasks

o Use random data projections to simulate arbitrary downstream tasks
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LFR (Learning From Randomness)

Domain agnostic representation learning without augmentations

o A good representation should capture useful information that supports
various downstream predictive tasks

o Use random data projections to simulate arbitrary downstream tasks
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Random data projectors

e Initialization | Randomly initialized neural networks

e Training | Projectors are fixed during training

o LFR can train faster than standard methods like SImCLR with only one pass through the

encoder and no CPU-intensive augmentations

e Diversity | Diverse projections benefit the learned representations
o Use determinantal point process to select diverse projectors from larger candidate pool
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Diverse projectors focus on different aspects Similar projectors use redundant features
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7 More results available in the paper

Supervised

L DACL

Random Ini
Autoencoder

LFR (Ours

Linear evaluation performance on downstream tasks

Tabular

Income HEPMASS
84.8 £ N/A 90.7 £ N/A
81.5+0.2 91.5+0.0
83.1+0.2 84.3+1.3
85.0+0.1 90.7 £ 0.0
82204 -

79.8£0.7 88.7+0.8
79.2+1.9 85.3+ 3.1
84.2+0.1 90.1+£0.1
84.2+0.3 83.6+1.7
85.2+0.1 90.1+£0.2

HAR
57.5 £ N/A
96.0+ 0.6
80.7+2.3
77.2+0.7
88.6 £1.3
90.7+04
65.1+0.8
87.8+0.4

91.2+0.8
93.1%0.5

Time series

Epilepsy
80.9 £ N/A
98.3+0.1
89.1+ 0.1
90.8+1.3
96.8+ 0.3
97.5+1.5
97.4+0.0
974 +0.2

97.6+0.2
97.9%0.2

Image
MIMIC-II Kvasir
47.8 £ N/A -
48.8+0.0 83.2+0.2
424 +11 28957
449+0.5 724+ 0.6
33.8+5.2 71.3+£0.9
409+0.6 72.1+0.1
41.0+1.9 726+1.4
441 +£0.1 72.1+£0.3
385+1.3 -
46.6 £ 0.3 749 0.6

Medical datasets




