

Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy

Simon Ging *

María A. Bravo *

Thomas Brox

University of Freiburg

Poster session

Halle B, Thu 9 May, 4:30 p.m.

iclr.cc/virtual/2024/poster/19102

COMPUTER VISION University of Freiburg

* Equal Contribution

Vision-Language Models

Vision-language research requires understanding of vision and language

Vision-Language Models

Vision-language research requires understanding of vision and language

Captioning

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Vision-Language Models

Vision-language research requires understanding of vision and language

Captioning

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Visual Question Answering

Vision-Language Models

Vision-language research requires understanding of vision and language

Captioning

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Visual Question Answering

How many dogs are in the image?

Visual Dialog

Vision-Language Models

Vision-language research requires understanding of vision and language

Captioning

Make a short description of the image.

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Visual Question Answering

How many dogs are in the image?

Visual Dialog

Vision-Language Models

Vision-language research requires understanding of vision and language

Visual Question Answering

Challenges in evaluation of Open-ended VQA

Ambiguous object

What's this? (*Label:* Porcupine) *Model output:* A tree with no leaves

Visual Question Answering

Challenges in evaluation of Open-ended VQA

Ambiguous object

What's this? (*Label:* Porcupine) *Model output:* A tree with no leaves

Unknown label granularity

What's this? (*Label:* Newfoundland dog) *Model output:* A black dog standing in the water

Open-ended Visual Question Answering oVQA benchmark

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Dataset: COCO Question: What's this? Label: elephant

Open-ended Visual Question Answering oVQA benchmark

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Dataset: COCO Question: What's this? Label: elephant

Actions

Dataset: ActivityNet Question: What activity is this? Label: playing drums

Open-ended Visual Question Answering oVQA benchmark

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Dataset: COCO Question: What's this? Label: elephant

Actions

Dataset: ActivityNet *Question:* What activity is this? *Label:* playing drums

Attributes

Dataset: OVAD *Question:* What is the position of the person? *Label:* standing / upright / vertical

oVQA Benchmark Visual guidance

What's this? Label: Porcupine

Model output: A tree with no leaves

oVQA Benchmark Visual guidance

Model output: A tree with no leaves

What's this? *Label:* Porcupine

crop

Model output: A porcupine

oVQA Benchmark Follow-up question

Label: Newfoundland dog

oVQA Benchmark **Follow-up question**

Label: Newfoundland dog

entity

oVQA Benchmark Follow-up question

Choosing the correct metric for binary classification

Choosing the correct metric for binary classification

Choosing the correct metric for multi-class classification

Sub-benchmarks

Object-oVQA Object-oVQA (COCO) (ImageNet)

Classes

Follow-up

Size

Question ex.

80 objects

36,800 crops

What is in the image? What is in the image?

1000 objects

50,000 images

Sub-benchmarks

Size

Sub-benchmarks

Object-oVQA Object-oVQA Activity-oVQA Attribute-oVQA (COCO) (ImageNet) (ActivityNet) (OVAD)

Classes

Follow-up

Size

Question ex.

80 objects

36,800 crops

What is in the image?

1000 objects

50,000 images

What is in the image?

200 activities

7,700 frames

What is happening in

the image?

117 attributes

14,300 crops

What is the position of the person?

Vision-Language Models

Multi-purpose VLM

Make a short description of the image.

The image shows a person sitting on a sandy beach, with three large dogs.

- BLIP-2 FlanT5 XL
- BLIP-2 OPT

Finetuned Visual Question

Answering models

How many	dogs	are	in	the
image?				

There are three dogs.

- BLIP
- X2-VLM

Dialog and instruction models

- LLaVA
- InstructBlip

Model results

Qualitative Examples

Objects (ImageNet)

correct answer wrong answer

Question: What's this? Label: Dalmatian BLIP-2 OPT output: it's a dalmatian LLaVA output: The image features a large black and white dog laying down on the floor, possibly on a carpet.

Follow-up Question: What type of dog is this? **LLaVA** *output*: The dog in the image is a Dalmatian.

Qualitative Examples

Objects (ImageNet)

correct answer wrong answer

Question: What's this? *Label:* Dalmatian **BLIP-2 OPT** *output:* it's a dalmatian **LLaVA** *output:* The image features a large black and white dog laying down on the floor, possibly on a carpet.

Follow-up Question: What type of dog is this? **LLaVA** *output*: The dog in the image is a Dalmatian.

Attributes (OVAD)

Question: How many people are present in the image? Label: individual / one / single / 1 / sole / alone BLIP_{vqa} output: one BLIP-2 OPT output: None. InstructBLIP T5 output: 2 LLaVA output: There are two people present in the image. X^2 -VLM_{vqa} L output: one

Metrics

User study

What type of donut is on the top right?

Label: chocolate iced glazed

2000 model predictions evaluated.

Metrics

User study

What type of donut is on the top right?

Label:	choco	late	iced	a	azed
				9	

\$	chocolate glazed donut
I rate S	5/5.

Metric *	Pearson Corr
GPT-4 _{10-shot}	0.972
Llama2 _{5-shot}	0.919
Cont	0.906
EM	0.525
LERC	0.827
ROUGE	0.717

* More metrics in the paper

2000 model predictions evaluated.

Metrics

User study

- LLMs outperform classical metrics
- Contains metric improves over learned metrics
 and translation metrics

What are the vegetables to the left of the bowl that is to the left of the cookies? *Label:* carrots

Output	Label	EM	Cont	LLaMA-2	GPT-4
carrots	carrots	1.00	1.00	1.00	1.00
The vegetables to the left of the bowl are carrots and green beans.	carrots	0.00	1.00	1.00	0.25

Metric *	Pearson Corr
GPT-4 _{10-shot}	0.972
Llama2 _{5-shot}	0.919
Cont	0.906
EM	0.525
LERC	0.827
ROUGE	0.717

* More metrics in the paper

Contributions

oVQA: A new benchmark for diagnosing Text-VLM performance in an open-ended VQA setup

- Remove ambiguities
- Ask follow-up questions

Contributions

oVQA: A new benchmark for diagnosing Text-VLM performance in an open-ended VQA setup

- Remove ambiguities
- Ask follow-up questions
- Use provably strong metrics

oVQA benchmark

Dataset: VQAv2 Question: Where is the cat? Label: on desk (x4), desk (x3), center of picture, at home, on table

Dataset: GQA Question: What is the spoon made of? Label: metal

Label: cougar

this?

Actions

Dataset: ActivityNet Question: What activity is this? Label: playing drums

Question: What's this? Label: elephant

Objects

Dataset: OVAD Question: What is the position of the person? Label: standing / upright / vertical

oVQA: Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy ICLR 2024

Contributions

oVQA: A new benchmark for diagnosing Text-VLM performance in an open-ended VQA setup

- Remove ambiguities
- Ask follow-up questions
- Use provably strong metrics

oVQA benchmark

Dataset: VQAv2 Question: Where is the cat? Label: on desk (x4), desk (x3), center of picture, at home, on table

Dataset: GQA Question: What is the spoon made of? Label: metal

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Actions

Dataset: ActivityNet Question: What activity is this? Label: playing drums

Dataset: COCO

Label: elephant

Question: What's this?

Dataset: OVAD Question: What is the position of the person? Label: standing / upright / vertical

Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy

Simon Ging *

María A. Bravo *

Thomas Brox

University of Freiburg

Poster session

Halle B, Thu 9 May, 4:30 p.m.

iclr.cc/virtual/2024/poster/19102

COMPUTER VISION University of Freiburg

* Equal Contribution