Minimax optimality of convolutional neural networks for infinite dimensional input output problems
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Background

+ Why NNs perform well with infinite-dimensional input and output?

- We call this y as mixed smoothness: smoothness varies by direction.
— The reason it can generalize even in infinite dimensions.
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Proof Strategy

For main result I:

/EX|st|ng work: )  The output’s decay rate r is included, marks a difference from standard settings. . . . _ _
« Dealing with long sequence lengths in input and output for text, images, and audio: M . I ". Using Fano’s lhequallty [Yang & Barron, 1999], [F_zaskutu et al., 2012], [Suzuki, 2019],
(Brown et al, 2020], [Rombach et al, 2022], [Racford et al, 2022] aln result l: what we need is a lower bound for covering number of y-smooth space.
+ Research on infinite-dimensional inputs and outputs as linear operators: H H H . < 83 log N+ n—de,zl+log 2
[Oliva et al., 2013;2014], [Fischer & Steinwart, 2020], [Talwai et al., 2022], [Jin et al., 2022] EStI matlon error Of non I I nea r operato rs by CN NS l?f sup IE:Dn [“f f ”Lz (PX)] ( IOZgM
+ Via the low dimensional structure or smoothness argument: . . L . . o f*e (U( q))
[Chen et al., 2019; 2022], [Nakada & Imaizumi, 2020], [Suzuki & Nitanda , 2021] Empl rical risk minimization (ER'\{I) estimator f : ~ ¥ X
- DeepONet can approximate nonlinear operators: 2 L n 2 1. Select §—packing of £} : {0, f1, ..., f%, .., fN
[Lu et al., 2021], [Lanthaler et al., 2022] f € argmingep EZj:l ”f(xf) —Jj ”(,’2’ V4 » ,q { . }
+ CNNs achieve estimation errors depends on smoothness [Okumoto & Suzuki 2021]: where P is the set of CNNs (T ) - (:7: ) 2. The packing of (F, ( q) contains
+ Using y - smooth space, it showed the error rate with infinite dimension of input (not output). the combination of fk [Raskutti et al., 2012]
h h - CNNs can perform appropriate variable selection from infinite-dimensional inputs. : : :
We show that - A lower bound of the covering number of Tp’fq can be obtained by evaluating that
- CNNs achieve estimation error depends on smoothness The ERM estimator f achieves the following estimation error: of the following subset:
and output’s decay rate with infinite input & output dimension settings E [||f f*”Z ] < p-@-P)(a1-v)/2(a—v)+1) {65(NI |I6s(f)||;ppyq <1}
o i Y H D. - ~ . . . . ’ .
its lower bounds on the minimax optimal rate " L2(Px) This ball is equivalent to a Euclidean ball, so we get the covering number.
* CNNs outperforms linear estimators :
Here, v := max{1/p — 1/2,0}, and we ignore poly-log order. For main result IlI:
Problem Settings Therefore, when p > 2, CNNs achieve minimax optimal rate. (F |- . [;_' 5 p—
. : : . or linear estimators [Hayakawa uzuki, :
Lo TP - CNNs, by using convolution, can adaptively select important features . :
/Target function: Condition: ) y g D Y D “The minimax rate of a space and the space of its convex hull are equal.”

fo = (fio)(ix;le (U(:Fp)fq))oo

1
_°||2 < Bzi_7,
|| < Bw (Yi€N),

Observation: | [

£ () +¢;

G=1,..,1)

where B,> 0, B, > 0, 0 < r < 1 are constants.

E=(&)2, &~N(0,07), An estimator is called linear if it is written by: L
where g; is uniformly bounded by 7 < oo. F(x) = 3™ v:¢;(x), where ¢ is an any function. _ _ _ _
y-smooth space: NlotationS' Y Y ex. Kernel ridggregress{ioln'] g Therefore, when we consider the union of the space, it makes the difference.
Frg ={f €L% | fllgy < oo}, N§ = {l € (NU{0})*:supp(]) < oo} g F(0) = [k(x,x0), k(x, %), -+, k(x, x)1(K + AD™Y ) 4 N 4 )
P 1 V2 cos(2m|l;|x;) (I; < 0) - N =
where ”f”TPVq = (ZseNgo(ZV(S)||6s(f)||p)q)" P, () = \/‘sm(zmz Ix) (I; > 0) We define the union of y-smooth space (F, ,(I')* as follows:
’ (i =0) Ya)
Architecture: _ (Fp,q(M)® U(T p —‘ '-»
Y) = ]_[izlwli(xo N a
= = 85(f) = Tiezee: 251 =<2 Fr )P where I' is a set of a, determined by the parameter c. :
= @ == . BT ; . . . .
= 23 g S| HEREPN y: monotonically increasing function c changes the range of existence of a, as shown in the right figure.
z L g 2 = yj Estimation Error: As c decreases, the range of a also narrows. | ) | _
8 o B (I3 \ lllustration lllustration of the convex hull
Dn . . . . . . i - i -
- L2(Px) % Theorem | The linear estimators achieve the following estimation error: \_ of the union of y-smooth space. AN of the union of y-smooth space. )
Main result I: Lower bound for y-smooth space inf su E 12 ] > n2a/(2ar1+o)
y p flinear ¢° EU((Fzz(g))”)ﬂBr Dn Ly(Px) Summary
The minimax optimal rate for estimating a function in (%5,) is: Here, a is a min value of @ in T. We analyzed the estimation error of CNNs in infinite input & output settings.
A 2 = Our contribution can be summarized as follows:
i — f* —-(2-r)ai/(2a;+1) . e . . .
l?f S‘ip o Epn [”f f ”LZ(PX)] = B * When the following condition is satisfied, CNNs outperform linear estimators:
re(uEy) e, (2a+n)r - Calculated lower bound for y-smooth space.
2=r - Showed estimation error of CNNs & it’s minimax optimal.

Here, y(s) = (a,s), a = (a;)i2; > 0is a monotonically increasing sequence,
and a; = Q@"), n>0.

from training data (corresponding here to a,).
— This is a type of feature learning that linear estimators cannot achieve.

Main result lll: Comparison with linear estimators
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On the other hand...
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- When c is large, the set of a, I' is larger, meaning the corresponding union set
is bigger, making it more challenging for linear estimators.

For CNNs (see main result I1):
The minimax rate depends only on a; — Feature extraction abilities of CNNSs.

- Confirmed CNNs outperform linear estimators.




	スライド 1

