Minimax optimality of convolutional neural networks for infinite dimensional input output problems and separation from kernel methods Yuto Nishimura¹ and Taiji Suzuki^{1,2} ¹The University of Tokyo, ²AIP-RIKEN

Background

• Why NNs perform well with infinite-dimensional input and output?

Existing work:

- Dealing with long sequence lengths in input and output for text, images, and audio: [Brown et al., 2020], [Rombach et al., 2022], [Radford et al., 2022]
- · Research on infinite-dimensional inputs and outputs as linear operators: [Oliva et al., 2013;2014], [Fischer & Steinwart, 2020], [Talwai et al., 2022], [Jin et al., 2022]
- · Via the low dimensional structure or smoothness argument:
- [Chen et al., 2019; 2022], [Nakada & Imaizumi , 2020], [Suzuki & Nitanda , 2021]
- · DeepONet can approximate nonlinear operators: [Lu et al., 2021], [Lanthaler et al., 2022]
- CNNs achieve estimation errors depends on smoothness [Okumoto & Suzuki 2021]: • Using γ -smooth space, it showed the error rate with infinite dimension of input (not output).

We show that

- CNNs achieve estimation error depends on smoothness and output's decay rate with infinite input & output dimension settings
- its lower bounds on the minimax optimal rate
- CNNs outperforms linear estimators

Problem Settings

Theorem The minimax optimal rate for estimating a function in
$$\left(\mathcal{F}_{p,q}^{\gamma}\right)^{\infty}$$
 is:

$$\inf_{\substack{\hat{f} \\ f^{\star} \in \left(U(\mathcal{F}_{p,q}^{\gamma})\right)^{\infty} \cap \mathcal{B}_{r}}} \mathbb{E}_{D_{n}}\left[\left\|\hat{f} - f^{\star}\right\|_{L_{2}(P_{X})}^{2}\right] \gtrsim n^{-(2-r)a_{1}/(2a_{1}+1)}$$

Here, $\gamma(s) = \langle a, s \rangle$, $a = (a_i)_{i=1}^{\infty} > 0$ is a monotonically increasing sequence, and $a_i = \Omega(i^\eta)$, $\eta > 0$.

- We call this γ as **mixed smoothness:** smoothness varies by direction. \rightarrow The reason it can generalize even in infinite dimensions.
- The output's decay rate r is included, marks a difference from standard settings.

Main result II:

Estimation error of nonlinear operators by CNNs

Empirical risk minimization (ERM) estimator \hat{f} :

$$\hat{f} \in \operatorname{argmin}_{f \in \bar{\mathcal{P}}} \frac{1}{n} \sum_{j=1}^{n} \|f(x_j) - y_j\|_{\ell^{2j}}^2$$

where $\bar{\mathcal{P}}$ is the set of **CNNs**

CNNs can perform appropriate variable selection from infinite-dimensional inputs.

The ERM estimator \hat{f} achieves the following estimation error: Theorem

$$\mathbb{E}_{D_n}\left[\left\|\hat{f} - f^{\star}\right\|_{L_2(P_X)}^2\right] \lesssim n^{-(2-r)(a_1 - \nu)/(2(a_1 - \nu) + 1)}$$

Here, $v \coloneqq \max\{1/p - 1/2, 0\}$, and we ignore poly-log order. Therefore, when $p \ge 2$, CNNs achieve minimax optimal rate.

- CNNs, by using convolution, can adaptively select important features from training data (corresponding here to a_1).
- \rightarrow This is a type of feature learning that **linear estimators cannot achieve**.

Main result III: Comparison with linear estimators

An estimator is called **linear** if it is written by:

 $\hat{f}(x) = \sum_{i=1}^{n} y_i \phi_i(x)$, where ϕ is an any function.

ex., Kernel ridge regression:

 $(l_i = 0)$

 $\hat{f}(x) = [k(x, x_1), k(x, x_2), \cdots, k(x, x_n)](K + \lambda I)^{-1}Y$

We define **the union of** γ **-smooth space** $(\mathbf{F}_{n,q}(\Gamma))^{\infty}$ as follows:

$$(\mathbf{F}_{p,q}(\Gamma))^{\infty} \coloneqq \bigcup_{a \in \Gamma} (\mathcal{F}_{p,q}^{\gamma_a})^{\infty},$$

where Γ is a set of *a*, determined by the parameter *c*.

c changes the range of existence of a, as shown in the right figure. As *c* decreases, the range of *a* also narrows.

Theorem The linear estimators achieve the following estimation error:

$$\inf_{\text{inear } f^{\circ} \in U((\mathcal{F}_{2,2}(\Gamma))^{\infty}) \cap B_{r}} \mathbb{E}_{D_{n}}\left[\left\|\hat{f} - f^{\circ}\right\|_{L_{2}(P_{X})}^{2}\right] \gtrsim n^{-2\underline{a}/(2\underline{a}+1)}$$

Here, a is a min value of a in Γ .

- · When the following condition is satisfied, CNNs outperform linear estimators: $c > \frac{(2\underline{a}+1)r}{2-r}$
- When c is large, the set of a, Γ is larger, meaning the corresponding union set is bigger, making it more challenging for linear estimators.

Proof Strategy

