
We analyzed the estimation error of CNNs in infinite input & output settings.

Our contribution can be summarized as follows:

・Calculated lower bound for 𝜸-smooth space.

・Showed estimation error of CNNs & it’s minimax optimal.

・Confirmed CNNs outperform linear estimators.
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Problem Settings

・Why NNs perform well with infinite-dimensional input and output?

Theorem The minimax optimal rate for estimating a function in ℱ𝑝,𝑞
𝛾 ∞

is: 
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Here, 𝛾 𝑠 = 𝑎, 𝑠 , 𝑎 = 𝑎𝑖 𝑖=1
∞ > 0 is a monotonically increasing sequence,
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Observation:

𝑦𝑗 = 𝑓° 𝑥𝑗 + 𝜉𝑗 (𝑗 = 1, … , 𝑛)
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where 𝜎𝑖 is uniformly bounded by ത𝜎 < ∞.

𝜸-smooth space:
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Notations:
ℕ0

∞ ≔ 𝑙 ∈ ℕ ∪ 0 ∞: supp 𝑙 < ∞
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𝛾: monotonically increasing function 
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ො𝑦𝑗 Estimation Error:
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Architecture:

Theorem The ERM estimator መ𝑓 achieves the following estimation error:

𝔼𝐷𝑛
መ𝑓 − 𝑓⋆

𝐿2(𝑃𝑋)

2
≲ 𝑛− 2−𝑟 (𝑎1−𝑣)/(2(𝑎1−𝑣)+1)

Here, 𝑣 ≔ max{1/𝑝 − 1/2, 0} , and we ignore poly-log order.

Therefore, when 𝑝 ≥ 2, CNNs achieve minimax optimal rate.

Empirical risk minimization (ERM) estimator መ𝑓 :

መ𝑓 ∈ argmin𝑓∈ ത𝒫

1

𝑛
∑𝑗=1

𝑛 𝑓 𝑥𝑗 − 𝑦𝑗 ℓ2

2
,

where ത𝒫 is the set of CNNs

An estimator is called linear if it is written by:
መ𝑓 𝑥 = ∑𝑗=1

𝑛 𝑦𝑗𝜙𝑗 𝑥 , where 𝜙 is an any function.

ex., Kernel ridge regression:
መ𝑓 𝑥 = 𝑘 𝑥, 𝑥1 , 𝑘 𝑥, 𝑥2 , ⋯ , 𝑘 𝑥, 𝑥𝑛 𝐾 + 𝜆𝐼 −1𝑌

Theorem The linear estimators achieve the following estimation error:

inf
𝑓:linear

sup
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2
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Here, 𝑎 is a min value of 𝑎 in Γ.

For main result I:

For main result III:

For linear estimators [Hayakawa & Suzuki, 2020]: 

“The minimax rate of a space and the space of its convex hull are equal.”

On the other hand…

For CNNs (see main result II):

 The minimax rate depends only on 𝒂𝟏 → Feature extraction abilities of CNNs.

Therefore, when we consider the union of the space, it makes the difference.

Illustration

of the union of 𝛾-smooth space.

𝑎

𝑎

Illustration of the convex hull 

of the union of 𝛾-smooth space.

𝑎

𝑎

Using Fano’s inequality [Yang & Barron, 1999], [Raskutti et al., 2012], [Suzuki, 2019], 

what we need is a lower bound for covering number of 𝜸-smooth space.
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A lower bound of the covering number of ℱ𝑝,𝑞
𝛾

 can be obtained by evaluating that 

of the following subset:

{𝛿𝑠 𝑓 | 𝛿𝑠 𝑓 ℱ𝑝,𝑞
𝛾 ≤ 1}.

This ball is equivalent to a Euclidean ball, so we get the covering number. 

ℱ𝑝,𝑞
𝛾 ∞

ℱ𝑝,𝑞
𝛾 𝑑

⊃
1. Select 𝛿−packing of ℱ𝑝,𝑞

𝛾
: 0, 𝑓1, … , 𝑓𝑘, … , 𝑓𝑁

2. The packing of ℱ𝑝,𝑞
𝛾 𝑑

contains 

     the combination of 𝑓𝑘 [Raskutti et al., 2012]

・We call this 𝛾 as mixed smoothness: smoothness varies by direction.

    → The reason it can generalize even in infinite dimensions.
・The output’s decay rate 𝑟 is included, marks a difference from standard settings.Existing work:

・Dealing with long sequence lengths in input and output for text, images, and audio:

    [Brown et al., 2020], [Rombach et al., 2022], [Radford et al., 2022]

・Research on infinite-dimensional inputs and outputs as linear operators:

    [Oliva et al., 2013;2014], [Fischer & Steinwart, 2020], [Talwai et al., 2022], [Jin et al., 2022]

・ Via the low dimensional structure or smoothness argument:

    [Chen et al., 2019; 2022], [Nakada & Imaizumi , 2020], [Suzuki & Nitanda , 2021]

・DeepONet can approximate nonlinear operators:

    [Lu et al., 2021], [Lanthaler et al., 2022]

・CNNs achieve estimation errors depends on smoothness [Okumoto & Suzuki 2021]: 
    ・Using 𝛾- 𝑠𝑚𝑜𝑜𝑡ℎ 𝑠𝑝𝑎𝑐𝑒, it showed the error rate with infinite dimension of input (not output).

・CNNs achieve estimation error depends on smoothness 

       and output’s decay rate with infinite input & output dimension settings
・its lower bounds on the minimax optimal rate

・CNNs outperforms linear estimators

・CNNs can perform appropriate variable selection from infinite-dimensional inputs.

    

・CNNs, by using convolution, can adaptively select important features

    from training data (corresponding here to 𝑎1).

 → This is a type of feature learning that linear estimators cannot achieve.    

・When the following condition is satisfied, CNNs outperform linear estimators:

𝑐 >
(2𝑎+1)𝑟

2−𝑟
.

・When 𝑐 is large, the set of 𝑎, Γ is larger, meaning the corresponding union set 

    is bigger, making it more challenging for linear estimators.

We show that

       

We define the union of 𝜸-smooth space (𝐅𝒑,𝒒(𝚪))∞ as follows:

(F𝑝,𝑞(Γ))∞ ≔ ራ

𝑎∈Γ

ℱ𝑝,𝑞
𝛾𝑎 ∞

,

where Γ is a set of 𝑎, determined by the parameter 𝑐. 

𝑐 changes the range of existence of 𝑎, as shown in the right figure. 
As 𝑐 decreases, the range of 𝑎 also narrows.  
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