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1. Motivation

 Adopt pretrained large scale Text-to-Image diffusion 
models, e.g., Stable Diffusion, for Layout-to-Image task.

 We identify two challenges:
           Alignment with the desired layout condition
           Editability via text control 
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3. Novel Training Strategy

Code 
& Models!

Adversarial Supervision Multistep Unrolling
Explicitly leverage the label 

map condition for supervision 
Better imitate the inference time sampling 

with more comprehensive supervision 
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4. Method Overview

(C) Adversarial supervision:
 (N+1)-Classes-Segmenter-Based Discriminator
     Real → N semantic classes, Fake → One extra “fake” class
 Generator (diffusion model) should learn to fool the discriminator, 

i.e., synthesize samples that well comply with the label map

(B) Multistep unrolling: 
 Bridge the gap between inference time sampling and single 

timestep sampling during training
 Employ supervision over consecutive denoising steps

→ Consistent alignment with the given layout condition
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2. Traditional Training
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 Sample the noisy latent 
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 Learn to denoise, i.e., 
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5. Results
ALDM can effectively enhance the layout faithfulness!
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7. Application: Improved Domain Generalization
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mIoU ↑ TIFA ↑ mIoU ↑ TIFA ↑
FreestyleNet 68.8 0.300 36.1 0.740
T2I-Adapter 37.1 0.902 24.0 0.892
ControlNet 55.2 0.822 30.4 0.838
ALDM (Ours) 63.9 0.856 36.0 0.888

Metric:
 mIoU: measure alignment with 

the layout condition
 TIFA: measure text editability

By default, ALDM represents 
ControlNet + Adv. Supervision + 
Multistep unrolling.

6. Ablation Study
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The proposed 
Adversarial Supervision & 
Multistep Unrolling can 
effectively boost different 
layout-to-image diffusion 
models, e.g., T2I-Adapter 
and ControlNet.
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