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Diffusion models can be designed
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Problem in Conditional Diffusion Models

Generated samples do not always follow the conditions
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Generated samples do not always follow the conditions
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Problem in Conditional Diffusion Models

Generated samples do not always follow the conditions

» What people do? Cherry Picking by hands!
» Automatic Scoring via Al is required
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Previous Work

Common framework: Data Construction — Train [1, 2, 3]

Stage 1: 1) Requires human effort to construct dataset

Dataset
Construction 2) Computational costs to generate images

Stage 2: 3) Computational costs to train model
Train

Model 4) Limited to Text-Image alignment only
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Common framework: Data Construction — Train [1, 2, 3]
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Our Key Idea

Conditional

Diffusion Model

Conditional Diffusion Models might already know
alignments between condition and generated samples

@ Use the Conditional Probability measured by the
diffusion models themselves

1) Training Free
2) Can be applied to any type of {condition/output}
e.g.) {text/image}, {image/image}, {text/audio}



Preliminary

Score-Based Generative Modeling through Stochastic Differential Equations
(Song et. al, ICLR 2021)

If the reverse process of a conditional diffusion model is formulated as a probability flow ODE, it
can be represented by the following equation:

dx = fo(x(t),c, t)dt.

Then, conditional probability can be measured as follows:

1
log po (x(0)]c) =1logp; (x(1)) + j U, - folx(t),c,)dt .
0
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Preliminary experiment

Goal: Find other options for alignment score

How to: Find option « CLIP Score

Experiment step:

1.

Generate 100 images from text “Woman,

Green hair, Sunglasses”

. Measure

* logpg (x) : Inverse proportional

Po (X)
» logpg (x|c) —logpg (x) )
Select Top N% via each probability and

measure mean CLIP score

Mean CLIP Score

0.335
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0.29

0.275
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Top N% selected by each probs



Insight from toy Experiment

logpy (x|c) —logpy (x) is better than py (x).



Insight from toy Experiment

logpy (x|c) —logpy (x) is better than py (x).

Therefore,
we define our universal Condition Alignment

Score as:

CAS(x,¢,0) = logpg (x|c) —logpg (x)
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Method in detail:

Conditional DDIM Inversion
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Method in more detail:

Conditional DDIM Inversion
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* For more detail, please refer to the main paper



Method in more detail:

Conditional DDIM Inversion
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Backpropagation is too slow.
NCICA ) \\Ve propose Faster Approximation!

* For more detail, please refer to the main paper



Comparison to previous works:

Number of train data used

CLIP Image HPS [3]

Pick

Score [1] Reward [2]
Text # 400M 9K ~99K

Score [4]
~584K

None

Image #  400M 4~9/text  ~25K

~38K

None

[1] Hessel et. al., CLIPScore: A Reference-free Evaluation Metric for Image Captioning

[2] Su et. al., ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation
[3] Wu et. al., Human Preference Score: Better Aligning Text-to-Image Models with Human Preference
[4] Kirstain et. al., Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation




Comparison to previous works:

Human preference alignment evaluation

Pick Score Dataset
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Comparison to previous works:

Human preference alignment evaluation
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Conclusion
We propose CAS, the universal condition alignment score

To summarize our main contribution, our method
« Leverages conditional probability measured from diffusion model
* Provide DDIM recursive inversion and approximation technique



Conclusion

We propose CAS, the universal condition alignment score

To summarize our practical benefits, our method
 |s train-free and operates around all domains
« Would be helpful to various domains whose metrics are not defined



Conclusion

We propose CAS, the universal condition alignment score

To summarize our findings, our method

* Implies that conditional probability space is overfitted to unconditional
probability space

« Implies that diffusion models are truly probabilistic
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