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Problem in Conditional Diffusion Models

No Aurora

No Igloo
No Aurora

No People
No Aurora

Good!

What people do? Cherry Picking by hands!

Cherry Pick

Generated samples do not always follow the conditions
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Automatic Scoring via AI is required

Problem in Conditional Diffusion Models

What people do? Cherry Picking by hands!
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1) Requires human effort to construct dataset
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Conditional 
Diffusion Model

Conditional Diffusion Models might already know 
alignments between condition and generated samples

Use the Conditional Probability measured by the 
diffusion models themselves

Our Key Idea

1) Training Free
2) Can be applied to any type of {condition/output}

e.g.) {text/image}, {image/image}, {text/audio}



Score-Based Generative Modeling through Stochastic Differential Equations 
(Song et. al, ICLR 2021)

If the reverse process of a conditional diffusion model is formulated as a probability flow ODE, it 
can be represented by the following equation: 

Preliminary

𝑑𝒙 = 𝒇% 𝒙 𝑡 , 𝑐, 𝑡 𝑑𝑡.

Then, conditional probability can be measured as follows:

log 𝑝& 𝒙 0 |𝑐 = log 𝑝' 𝒙 1 + 3
&

'
∇𝒙 5 𝒇% 𝒙 𝑡 , 𝑐, 𝑡 𝑑𝑡 .
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Diffusion Model

Generated Samples

Generate

Measure 𝑝𝜽 𝒙 𝒄 explicitly 
and reorder

< < <
Not working.

Why?
3rd 1st

Our Initial attempt



Goal: Find other options for alignment score

How to: Find option ∝ CLIP Score

Experiment step:

1. Generate 100 images from text “Woman, 

Green hair, Sunglasses”
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3. Select Top N% via each probability and 

measure mean CLIP score

Preliminary experiment
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Sub-Contribution)
DDIM inversion is NOT accurate enough.

We propose DDIM recursive inversion!
* For more detail, please refer to the main paper
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Sub-Contribution)
Backpropagation is too slow.

We propose Faster Approximation!
* For more detail, please refer to the main paper

Method in more detail:



Comparison to previous works:

CLIP 
Score [1]

Image 
Reward [2]

HPS [3] Pick 
Score [4]

Ours

Text # 400M 9K ~99K ~584K None
Image # 400M 4~9/text ~25K ~38K None

Number of train data used

[1] Hessel et. al., CLIPScore: A Reference-free Evaluation Metric for Image Captioning
[2] Su et. al., ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation
[3] Wu et. al., Human Preference Score: Better Aligning Text-to-Image Models with Human Preference
[4] Kirstain et. al., Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation



Comparison to previous works:
Human preference alignment evaluation
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Van Gogh Dataset
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Comparison to previous works:
Human preference alignment evaluation



Conclusion
We propose CAS, the universal condition alignment score

To summarize our main contribution, our method
• Leverages conditional probability measured from diffusion model
• Provide DDIM recursive inversion and approximation technique

To summarize our practical benefits, our method
• Is train-free and operates around all domains
• Would be helpful to various domains whose metrics are not defined

To summarize our findings, our method
• Implies that conditional probability space is overfitted to unconditional 

probability space
• Implies that diffusion models are truly probabilistic
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