

CAS: A Probability-Based Approach for Universal Condition Alignment Score

Tae-Hyun Oh³

¹Korea Advanced Institute of Science & Technology (KAIST) ²Seoul National University ³Pohang University of Science & Technology (POSTECH)

* Equal contribution

Text-to-Image [1]

{Edge/Text}-to-Image [2]

Text-to-Audio [3]

Text-to-Image [1]

{Edge/Text}-to-Image [2]

Text-to-Audio [3]

Text-to-Image [1]

{Edge/Text}-to-Image [2]

Text-to-Audio [3]

"A winter wonderland at night, with ice sculptures glowing under the aurora bareexte skaing on a viozen lake, and cozy igloos serving warm, spiced drinks."

Text-to-Image [1]

{Edge/Text}-to-Image [2]

Text-to-Audio [3]

Problem in Conditional Diffusion Models

Generated samples **do not always follow** the conditions

People, Aurora?

Igloo, Aurora?

Problem in Conditional Diffusion Models

Generated samples **do not always follow** the conditions

What people do? Cherry Picking by hands!

"People ..., Aurora ..., Igloos ..."

Cherry Pick

Good!

No Igloo No Aurora

No Aurora

No People No Aurora

Problem in Conditional Diffusion Models

Generated samples **do not always follow** the conditions

What people do? Cherry Picking by hands!

Automatic Scoring via AI is required

"People ..., Aurora ..., Igloos ..."

Automated Scoring

0.9

0.1

0.3

0.1

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Common framework: Data Construction \rightarrow Train [1, 2, 3]

Our Key Idea

Conditional Diffusion Models might already know alignments between condition and generated samples

Use the Conditional Probability measured by the diffusion models themselves

- 1) Training Free
- 2) Can be applied to any type of {condition/output}

e.g.) {text/image}, {image/image}, {text/audio}

Preliminary

Score-Based Generative Modeling through Stochastic Differential Equations (Song et. al, ICLR 2021)

If the reverse process of a conditional diffusion model is formulated as a probability flow ODE, it can be represented by the following equation:

 $d\mathbf{x} = \mathbf{f}_{\theta}(\mathbf{x}(t), c, t) dt.$

Then, conditional probability can be measured as follows:

$$\log p_0(\boldsymbol{x}(0)|c) = \log p_1(\boldsymbol{x}(1)) + \int_0^1 \nabla_{\boldsymbol{x}} \cdot \boldsymbol{f}_{\theta}(\boldsymbol{x}(t), c, t) dt.$$

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$
 - $\log p_{\theta}(x|c)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$
 - $\log p_{\theta}(x|c)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$
 - $\log p_{\theta}(x|c)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$
 - $\log p_{\theta}(x|c)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$: Inverse proportional
 - $\log p_{\theta}(x|c)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$: Inverse proportional
 - $\log p_{\theta}(x|c)$: overfit to $p_{\theta}(x)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Goal: Find other options for alignment score **How to**: Find option \propto CLIP Score

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$: Inverse proportional
 - $\log p_{\theta}(x|c)$: overfit to $p_{\theta}(x)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Insight from toy Experiment

$\log p_{\theta}(x|c) - \log p_{\theta}(x) \text{ is better than } p_{\theta}(x).$

- Generate 100 images from text "Woman, Green hair, Sunglasses"
- 2. Measure
 - $\log p_{\theta}(x)$: Inverse proportional
 - $\log p_{\theta}(x|c)$: overfit to $p_{\theta}(x)$
 - $\log p_{\theta}(x|c) \log p_{\theta}(x)$
- 3. Select Top N% via each probability and measure mean CLIP score

Insight from toy Experiment $\log p_{\theta}(x|c) - \log p_{\theta}(x)$ is better than $p_{\theta}(x)$. **v to**: Find option \propto CLIP Sec Therefore, es from text "Woman, we define our universal **Condition Alignment Score** as: nverse proportional $CAS(x, c, \theta) = \log p_{\theta}(x|c) - \log p_{\theta}(x)$

Method in more detail:

Method in more detail:

Comparison to previous works:

Number of train data used

	CLIP Score [1]	Image Reward [2]	HPS [3]	Pick Score [4]	Ours
Text #	400M	9K	~99K	~584K	None
Image #	400M	4~9/text	~25K	~38K	None

[1] Hessel et. al., CLIPScore: A Reference-free Evaluation Metric for Image Captioning

[2] Su et. al., ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation

[3] Wu et. al., Human Preference Score: Better Aligning Text-to-Image Models with Human Preference

[4] Kirstain et. al., Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation

Comparison to previous works:

Human preference alignment evaluation

Pick Score Dataset

"Western style dog"

Comparison to previous works:

Human preference alignment evaluation

Van Gogh Dataset

"Van Gogh style, Venezia"

Conclusion

We propose CAS, the universal condition alignment score

To summarize our main contribution, our method

- Leverages conditional probability measured from diffusion model
- Provide DDIM recursive inversion and approximation technique

To summarize our practical benefits, our method

- Is train-free and operates around all domains
- Would be helpful to various domains whose metrics are not defined

To summarize our findings, our method

- Implies that conditional probability space is overfitted to unconditional probability space
- Implies that diffusion models are truly probabilistic

Conclusion

We propose CAS, the universal condition alignment score

To summarize our main contribution, our method

- Leverages conditional probability measured from diffusion model
- Provide DDIM recursive inversion and approximation technique

To summarize our practical benefits, our method

- Is train-free and operates around all domains
- Would be helpful to various domains whose metrics are not defined

To summarize our findings, our method

- Implies that conditional probability space is overfitted to unconditional probability space
- Implies that diffusion models are truly probabilistic

Conclusion

We propose CAS, the universal condition alignment score

To summarize our main contribution, our method

- Leverages conditional probability measured from diffusion model
- Provide DDIM recursive inversion and approximation technique

To summarize our practical benefits, our method

- Is train-free and operates around all domains
- Would be helpful to various domains whose metrics are not defined

To summarize our findings, our method

- Implies that conditional probability space is overfitted to unconditional probability space
- Implies that diffusion models are truly probabilistic

Thank You