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Sequential nature of RNN
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The next state depends on the previous states: can’t be parallelized
Xep1 = f(xe)
Sequential models are slow in GPU/TPU
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Many says RNN is not parallelizable

Recurrent models typically factor computation along the symbol positions of the input and output
sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden
states h;, as a function of the previous hidden state h;_, and the input for position t. This inherently
sequential nature precludes parallelization within training examples, which becomes critical at longer
sequence lengths, as memory constraints limit batching across examples. Recent work has achieved
significant improvements in computational efficiency through factorization tricks [21] and conditional
computation [32], while also improving model performance in case of the latter. The fundamental
constraint of sequential computation, however, remains.

Vaswani et al., Attention is all you need, 201/
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Many says RNN is not parallelizable

Recurrent neural networks (RNNs) have played a central role since the early days of deep learning, and are
a natural choice when modelling sequential data (Elman, 1990; Hopfield, 1982; McCulloch and Pitts, 1943;
Rumelhart et al., 1985). However, while these networks have strong theoretical properties, such as Turing
completeness (Chung and Siegelmann, 2021; Kilian and Siegelmann, 1996), it is well-known that they can be
hard to train in practice. In particular, RNNs suffer from the vanishing and exploding gradient problem (Bengio
et al., 1994: Hochreiter, 1991; Pascanu et al., 2013), which makes it difficult for these models to learn about
the long-range dependencies in the data. Several techniques were developed that attempt to mitigate this
issue, including orthogonal/unitary RNNs (Arjovsky et al., 2016; Helfrich et al., 2018), and gating mechanisms
such as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent units
(GRUs) (Cho et al., 2014a). Nonetheless, these models are still slow to optimize due to the inherently sequential
nature of their computation (Kalchbrenner et al., 2016), and are therefore hard to scale.

Orvieto et al,, Resurrecting Recurrent Neural Networks for Long Sequences, 2023
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Simplest parallel algorithm for sequence:
Multi-shoot algorithm with Picard iteration

@ 3Cc)3 = f(xz)
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x1 = f(xo)
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Multi-shoot algorithm:
1. Get some initial guess of x( )

2. Evaluate the function f(x;) (parallelizable)
3. Update the value of x;

D f( (k))
4. repeat step #2 untll X1 = f(x;)

Simplest update algorithm (Picard iteration):

XD (x0)

Picard iteration is really bad: rarely converge
Alternative: Newton’s method
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Newton’s method for root finder

Finding x so that f(x) =0
For 1-dimension, iterate:

(x,, f(x,))
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Faster and more robust convergence than
Picard iteration
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RNN + Newton’s iteration: DEER

» Completely parallelizable in GPU

RNN * Details in our paper:
Xepq = f(xp) * https://arxiv.org/abs/2309.12252

Newton’s
iteration
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Results: speed up
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Speed up of DEER GRU over sequential GRU (forward) with batch size = 16
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Up to 1000x faster
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Results: output comparison

Difference between sequential and DEER outputs
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Results: usage in NeuralODE & RNN training

NeuralODE

—— DEER method
—— RK45 method
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Training up to 11x and 22x faster

with DEER
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Conclusion:
RNN is parallelizable!

Curious? See https://arxiv.org/abs/2309.12252
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