444 Machine Discovery

RNNs are
parallelizable!

Y. H. Lim, Q. Zhu, J. Selfridge, M. F. Kasim
ICLR 2024

Sequential nature of RNN

omomo O oo

The next state depends on the previous states: can’t be parallelized
Xep1 = f(xe)
Sequential models are slow in GPU/TPU

2 444 Machine Discovery

Many says RNN is not parallelizable

Recurrent models typically factor computation along the symbol positions of the input and output
sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden
states h;, as a function of the previous hidden state h;_, and the input for position t. This inherently
sequential nature precludes parallelization within training examples, which becomes critical at longer
sequence lengths, as memory constraints limit batching across examples. Recent work has achieved
significant improvements in computational efficiency through factorization tricks [21] and conditional
computation [32], while also improving model performance in case of the latter. The fundamental
constraint of sequential computation, however, remains.

Vaswani et al., Attention is all you need, 201/

3 444 Machine Discovery

Many says RNN is not parallelizable

Recurrent neural networks (RNNs) have played a central role since the early days of deep learning, and are
a natural choice when modelling sequential data (Elman, 1990; Hopfield, 1982; McCulloch and Pitts, 1943;
Rumelhart et al., 1985). However, while these networks have strong theoretical properties, such as Turing
completeness (Chung and Siegelmann, 2021; Kilian and Siegelmann, 1996), it is well-known that they can be
hard to train in practice. In particular, RNNs suffer from the vanishing and exploding gradient problem (Bengio
et al., 1994: Hochreiter, 1991; Pascanu et al., 2013), which makes it difficult for these models to learn about
the long-range dependencies in the data. Several techniques were developed that attempt to mitigate this
issue, including orthogonal/unitary RNNs (Arjovsky et al., 2016; Helfrich et al., 2018), and gating mechanisms
such as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent units
(GRUs) (Cho et al., 2014a). Nonetheless, these models are still slow to optimize due to the inherently sequential
nature of their computation (Kalchbrenner et al., 2016), and are therefore hard to scale.

Orvieto et al,, Resurrecting Recurrent Neural Networks for Long Sequences, 2023

4 444 Machine Discovery

Simplest parallel algorithm for sequence:
Multi-shoot algorithm with Picard iteration

@ 3Cc)3 = f(xz)

Xy = f(x1)
x1 = f(xo)
X0
Sequential

(non-parallelizable)

(parallelizable)

f(xz)
fx o)f(v o
@ (,?1 g?z X3
X0
Multi-shoot

Multi-shoot algorithm:
1. Get some initial guess of x()

2. Evaluate the function f(x;) (parallelizable)
3. Update the value of x;

D f((k))
4. repeat step #2 untll X1 = f(x;)

Simplest update algorithm (Picard iteration):

XD (x0)

Picard iteration is really bad: rarely converge
Alternative: Newton’s method

444 Machine Discovery

Newton’s method for root finder

Finding x so that f(x) =0
For 1-dimension, iterate:

(x,, f(x,))

K
L) a0 _ L)
f'(x®)
Faster and more robust convergence than
Picard iteration

«——— tangent line at x,

tangent line at X,

o - = = = = =

tangent line at X, —

T a X, ‘X,

s

6 444 Machine Discovery

RNN + Newton’s iteration: DEER

» Completely parallelizable in GPU

RNN * Details in our paper:
Xepq = f(xp) * https://arxiv.org/abs/2309.12252

Newton’s
iteration

7 444 Machine Discovery

Results: speed up

10%

1074

Speed up of DEER GRU over sequential GRU (forward) with batch size = 16

dim =1
dim = 2
dim =4
dim =8
dim = 16
dim = 32
dim = 64

1k 3k 10k 30K 100k 300k
Sequence length

e=16

Speed up of DEER GRU over sequential GRU (forward + grad) with batch siz

30k 1M
Sequence length

Up to 1000x faster

444 Machine Discovery

Results: output comparison

Difference between sequential and DEER outputs

GRU outputs for the last 200 indices le—7
0.5 -
r lﬂ ﬁ i
0.0 & \ “ & H ||" ‘ 0+
| MV R
-0.51 — sequential l‘ -2
—— DEER
=1.0 T T T -
9800 9825 9850 9875 9900 9925 9950 9975 10000 0 2000 4000 6000 BOOO 10000

Sequence index Sequence index
(a) (b)

9 444 Machine Discovery

Results: usage in NeuralODE & RNN training

NeuralODE

—— DEER method
—— RK45 method

v 107! 10714

o

s

°

T 1072; 1024

o

P

10~2 1077 4
0 50 100 150 200 250 300 0 10 20 30 40 50
Hours Training steps (x103)
(a) RN N (b)
|
I 1 L

3 091 T~ ILN SR 0.9 \1

o CACYYTRY. A \J\Y

=] \| W V L Vi |‘

3 |1,' V 'u/\/\/'\/\/f‘jw,\j

Y 0.8 0.8 \/

[1+]

C J

0 0.7 0.7 4

=l

3

= 061 0.6 1 —— DEER method

> \J —— Sequential method

0.5 0.5
5 10 15 20 25 0 2 4 6 8 10
Hours Training steps (x103)
(a) (b)
10

Training up to 11x and 22x faster

with DEER

444 Machine Discovery

1

Conclusion:
RNN is parallelizable!

Curious? See https://arxiv.org/abs/2309.12252

444 Machine Discovery

	Slide 1: RNNs are parallelizable!
	Slide 2: Sequential nature of RNN
	Slide 3: Many says RNN is not parallelizable
	Slide 4: Many says RNN is not parallelizable
	Slide 5: Simplest parallel algorithm for sequence: Multi-shoot algorithm with Picard iteration
	Slide 6: Newton’s method for root finder
	Slide 7: RNN + Newton’s iteration: DEER
	Slide 8: Results: speed up
	Slide 9: Results: output comparison
	Slide 10: Results: usage in NeuralODE & RNN training
	Slide 11: Conclusion: RNN is parallelizable! Curious? See https://arxiv.org/abs/2309.12252

