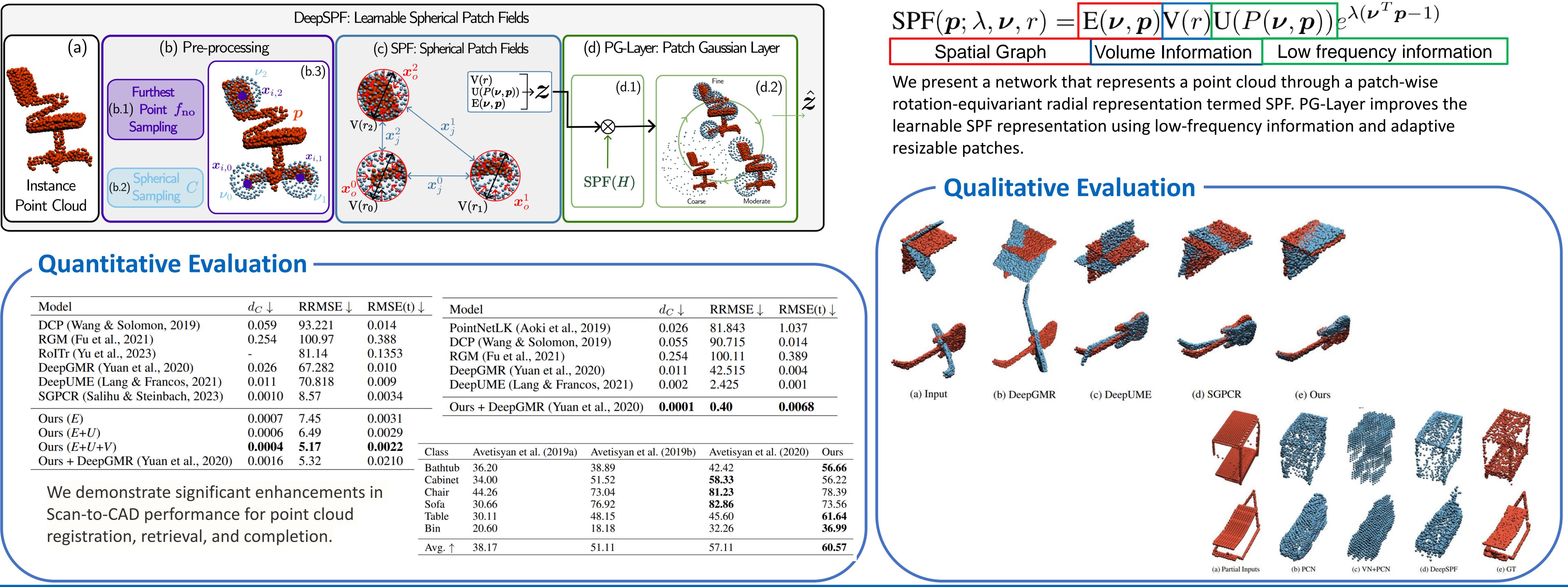
Technische Universität München

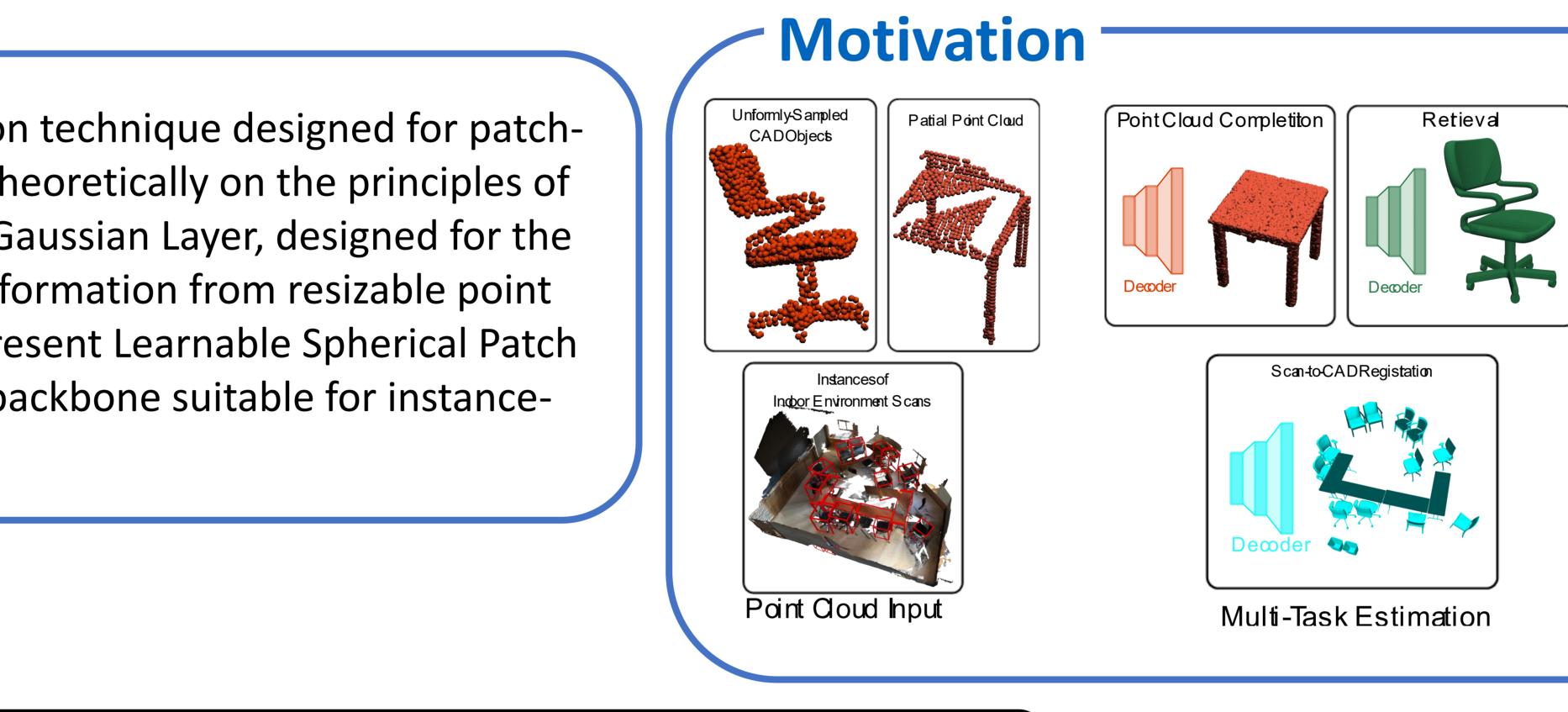


Bundesministerium Forschung

Information

We introduce Spherical Patch Fields, a representation technique designed for patchwise, SO(3)-equivariant 3D point clouds, anchored theoretically on the principles of Spherical Gaussians. Second, we present the Patch Gaussian Layer, designed for the adaptive extraction of local and global contextual information from resizable point cloud patches. Culminating our contributions, we present Learnable Spherical Patch Fields (DeepSPF) – a versatile and easily integrable backbone suitable for instancebased point networks.

Approach



Model	$d_C\downarrow$	$RRMSE \downarrow$	RMSE(t)	↓ M	Iodel		$d_C\downarrow$	RRMSE↓	RMSE(
DCP (Wang & Solomon, 2019)	0.059	93.221	0.014	Po	PointNetLK (Aoki et al., 2019)			81.843	1.037
RGM (Fu et al., 2021)	0.254	100.97	0.388		CP (Wang & Solomon,	0.055	90.715	0.014	
RoITr (Yu et al., 2023)	-	81.14	0.1353		RGM (Fu et al., 2021)			100.11	0.389
DeepGMR (Yuan et al., 2020)	0.026	67.282	0.010		DeepGMR (Yuan et al., 2020)			42.515	0.004
DeepUME (Lang & Francos, 2021)	0.011	70.818	0.009		DeepUME (Lang & Francos, 2021)			2.425	0.001
SGPCR (Salihu & Steinbach, 2023)	0.0010	8.57	0.0034						
	0.0007	7.45	0.0021	O	urs + DeepGMR (Yuan	et al., 2020)	0.0001	0.40	0.0068
Ours (E)	0.0007	7.45	0.0031						
Ours $(E+U)$	0.0006	6.49	0.0029						
Ours $(E+U+V)$	0.0004	5.17	0.0022	Class	Avetisyan et al. (2019a)	Avetisyan et a	l. (2019b)	Avetisyan et a	al. (2020)
Ours + DeepGMR (Yuan et al., 2020)	0.0016	5.32	0.0210	Bathtub	36.20	38.89		42.42	
				Cabinet	34.00	51.52		58.33	
				Chair	44.26	73.04		81.23	
				Sofa	30.66	76.92		82.86	
Scan-to-CAD performance for point cloud				Table	30.11	48.15		45.60	
registration, retrieval, and completion.				Bin	20.60	18.18		32.26	
				Avg. ↑	38.17	51.11		57.11	

DeepSPF: Spherical SO(3)-Equivariant Patches for Scan-to-CAD Estimation

Driton Salihu¹, Adam Misik ^{1,2}, Yuankai Wu¹, Constantin Patsch¹, Fabian Seguel¹, Eckehard Steinbach¹

¹ Technical University of Munich School of Computation, Information and Technology, Department of Computer Engineering, Chair of Media Technology, Munich Institute of Robotics and Machine Intelligence (MIRMI) ²Siemens Technology

Problems:

- **Retrieval:**
 - correspondences
 - designed object
- different over different datasets

<u>Registration</u>: Uniformly sampled CAD object and scanned object have no point-to-point correspondences

CAD object and scanned object have no point-to-point

Pose and cale are vastly different between sensor and

• Overall similar structures but patch-wise differences <u>Completion</u>: Vast amount of augmentation needed Learning