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scenarios
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conceptual knowledge

» Over-multitudinous conceptual knowledge: The knowledge contained by PLMs

exhibits inherent polysemy.

» Domain-irrelevant knowledge may interfere with the inference on downstream tasks,

especially for few-shot datasets.



Introduction

GPT-3 (Brown et al., 2020)
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Prompt-tuning
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(Gao et al,, 2021) (Han et al., 2022) (Chen et al., 2022b) (Hu et al., 2022)

The limited and discrete semantic information contained in the training samples
rom downstream domains can barely support the conventional trainable prompts to
acquire sufficient supervision, such that the guidance of the generated prompts is
trivial to PLMs. Especially, such a challenge further exacerbates the performance of
LMs in few-shot scenarios.
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Single Sample :
Incomplete Complete

Knowledge Knowledge
e.g. “ There 1s a bat on the grass. ”
e.g. “ There 1s a bat on the grass. ” e.g. “ He put the suitcase mn the bank. ”
e.g. “ He put the suitcase in the bank. ” e.g. “ The dealer showed us the rules. ”
e.g. “ There 1s a bat on the grass. ”
A Single Sample Incomplete Domain Complete Domain
(a) (b) (c)

Motivation: We intuitively explore to approximate the complete training domains on
downstream tasks in a debiased manner, and then abstract such domains to generate
discriminative prompts, thereby providing the de-ambiguous guidance for PLMs.
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» GMM: The Gaussian Mixture Model (GMM) is constructed to fit the sample distribution.

» SVGD: The distribution approximation is achieved by using Stein Variational Gradient
Descent (SVGD), which is a general-purpose Bayesian inference algorithm.

> Debiased Domain Abstraction: Abstracting a feature that can well describe the actual
downstream domain based on the debiased factual distribution.
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Eerriments

F1 scores (%) of prompt-tuning models with different settings

Few-Shot Setting

Datasets  Split FINE-TUNING GDPNET PTR KnowPrompt RetrievalRE BayesPrompt A(B-K) A(B-R)
K=1 18.5(x1.4) 10.3(£2.5) 14.7(x1.1)  28.6(£6.2) 33.3(£1.6) 35.1(x2.9)

SemEval K=5 41.5(x2.3) 42.7(x2.0) 539(x19) 66.1(£8.6) 69.7(x£1.7) 71.6(x3.3) +4.3 +1.23
K=16 66.1(x0.4) 67.5(£0.8) 80.6(x1.2) 80.9(£1.6) 81.8(x1.0) 81.8(x1.2)
K=1 7.6(x£3.0) 4.2(£3.8)  8.6(%2.5) 17.6(%£1.8) 19.5(£1.5) 22.5(%2.5)

TACRED K=5 16.6(£2.1) 15.5(£2.3) 24.9(+3.1) 28.8(£2.0) 30.7(x£1.7) 31.4(+0.6) +3 +1.27
K=16 26.8(x1.8) 28(x1.8) 30.7(x2.0) 34.7(x1.8) 36.1(x1.2) 36.2(=0.8)
K=1 7.2(x1.4) 5.1(x2.4)  9.4(x0.7) 17.8(%£2.2) 18.7(+1.8) 21.9(x2.0)

TACREV K=5 16.3(£2.1) 17.8(£2.4) 26.9(x1.5) 30.4(x0.5) 30.6(+0.2) 31.2(+0.8) +2.43 +1.37
K=16 25.8(x1.2) 26.4(x1.2) 31.4(x0.3) 33.2(x14) 35.3(x0.3) 35.6(x0.7)

» A(B-K) denotes the comparison between BayesPrompt and KnowPrompt, and A(B-R)
denotes the comparison between BayesPrompt and RetrievalRE.

» On average, BayesPrompt beats KnowPrompt by 3.24% among benchmark datasets.
For RetrievalRE, BayesPrompt achieves an average improvement of 1.29% among

benchmark datasets.



Eerriments

Standard RE performance of F1 scores (%) on benchmarks

Standard Setting

Methods Extra Data  SemEval @ TACRED TACREV  RE-TACRED  Average
Fine-tuning pre-trained models
FINE-TUNING w/o 87.6 68.7 76.0 84.9 79.3
SPANBERT w/ - 70.8 78.0 85.3 78.0
KNOWBERT w/ 89.1 71.5 79.3 89.1 82.3
LUKE w/ - 72.7 80.6 - 76.7
MTB w/ 89.5 70.1 - - 79.8
GDPNET w/o - 71.5 79.3 - 75.4
Prompt-tuning pre-trained models

PTR w/o 89.9 72.4 81.4 90.9 83.7
KnowPrompt w/o 90.2 72.4 82.4 91.3 84.1
RetrievalRE w/o 90.4 72.7 82.7 91.5 84.3

BayesPrompt w/o 90.6 72.9 83.0 914 84.5




Eerriments

Ablation Study
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Theoretical Insights

» The gap between prompting problem and domain adaptation

The “domain adaptation” is learning

|

I

! BayesPrompt aims to fit the distribution
! from a source data distribution a well- 0

|

|

I

1

f a few-shot domain, but it is not going i
performing model on a different (but !
related) target data distribution '

o align the distributions of the target
ew-shot domain and the domain of PLMs.,

- ~+

» Do the theoretical assumptions on a shared label space from domain
adaptation hold in prompt- tuning?

iln the prompt-tuning scenario, the downstream domain can be treated as the target i
domain, and the specific subset of the PLM domain can be treated as the source domain, !
Ei.e., the domain distribution alignment is performed between the specific subset of the i
:PLM domain and the downstream domain, which have the shared labels. However, the !
downstream domain can be bounded by the discrete data, but the specific subset of the !
. PLM domain cannot be certainly determined, such that conventional domain adaptation |
imethods cannot be directly leveraged to achieve our objective. i



Theoretical Insights

‘Proposition C.1. Let P (Z) be the set of Borel probabllzty measures. For 731"; v (Z), P}; s (Z )
e P (Z), there exists a pseudometric, i.e., d (P}; v (2), P he (Z )) satisfying the negative, sym-i

imemc and triangle inequality conditions. Furthermore, d ('PIJ; v (2), 'P he (Z )) 0 holds, when |
PLM (Z) = PDS (2).

__________________________________________________________________________________________________________________________________
__________________________________________________________________________________________________________________________________

' Corollary C.2. Let ’Pi be the distribution of the domain containing the label information, which is'
 stratified from Pif)s- For P, . (2), 'P{)S (Z), Pl e P(Z), we have '

(Phuss (2).Phs (2)) $3(Phuy (2).PL (D) +4(PL(2) Phs(2)). D)

' Theorem C.3. Suppose Dpry andD Ds Share a labeling function, i.e., L : Z — Y. For the prea’ictori
 functions Y h € H, we have the following inequality: |

8h = (P DS (Z)) = 8h L (P PLM (Z)) +d(75]£LM (Z) ,Pi;s (Z)) +1, (13)5

where 1 = 8h* (Plf)S (Z)) - 5h* (PIJ;LM (Z)) and h* is the ideal joint predictor shared by thei
\ two domains after training. .

_________________________________________________________________________________________________________________________________

Compared with benchmark approaches, BayesPrompt derives the tighter classification
error upper bound on the downstream inference of PLMs.
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