

CLIPSELF: VISION TRANSFORMER DISTILLS ITSELF FOR OPEN-VOCABULARY DENSE PREDICTION

Size Wu¹Wenwei Zhang¹Lumin Xu²Sheng Jin^{3,4}Xiangtai Li¹Wentao Liu^{4,5}Chen Change Loy¹¹ S-Lab, Nanyang Technological University² The Chinese University of Hong Kong³ The University of Hong Kong⁴ SenseTime Research and Tetras.AI⁵ Shanghai AI Laboratorysize001@e.ntu.edu.sgccloy@ntu.edu.sg

ICLR 2024

- Open-Vocabulary Dense Prediction
- CLIP Image and Dense Representation
- CLIPSelf
- Experiments
- Visualization & Analysis

Open-Vocabulary Dense Prediction

• Detect / Segment any object categories described by text

- Open-Vocabulary Dense Prediction
- CLIP Image and Dense Representation
- CLIPSelf
- Experiments
- Visualization & Analysis

- Image Recognition by CLIP Image Representation
 - Pretrained on large-scale image-text pairs
 - Strong zero-shot image recognition ability

- Image Recognition by CLIP Image Representation
 - Pretrained on large-scale image-text pairs
 - Strong zero-shot image recognition ability
 - The ViT-based variants exhibit superiority

- Region Recognition
 - a) Crop the regions and classify the **image crops** using CLIP image representation
 - b) Extract region features from the **dense feature** map of the whole image

a) Image Crop

b) Dense Feature

- Region Recognition
 - a) Crop the regions and classify the **image crops** using CLIP image representation
 - b) Extract region features from the **dense feature** map of the whole image

Region Classification on COCO

- Region Recognition
 - The dense features of CNN-base models exhibit strong zero-shot ability for region recognition, even outperform image representations

Region Classification on COCO

- Region Recognition
 - The dense features of CNN-base models exhibit strong zero-shot ability for region recognition, even outperform image representations
 - The dense features of CLIP ViTs exhibit poor region recognition ability, while using image crops achieves satisfactory results

Region Classification on COCO

- Region Recognition
 - The K-Means results of feature map also illustrate that the CNN-based model better preserve the locality of image features

- Region Recognition
 - A more comprehensive comparison between CLIP ViTs' Image Representation and Dense Representation

- Open-Vocabulary Dense Prediction
- CLIP Image and Dense Representation
- CLIPSelf
- Experiments
- Visualization & Analysis

CLIPSelf

- Motivation: Enhancing the CLIP ViTs' dense representation
 - 1. The CLIP ViTs have exhibit powerful image representation, and they can effectively recognize the image crops of the object regions.
 - 2. How can we adapt the image-level recognition ability to CLIP ViTs' dense representation?

Region Classification on COCO

CLIPSelf

- CLIPSelf: a self-distillation approach
 - The image representation of the cropped regions acts as the **teacher**
 - The region representation extracted from the dense feature map act as the **student**

- Open-Vocabulary Dense Prediction
- CLIP Image and Dense Representation
- CLIPSelf
- Experiments
- Visualization & Analysis

• Quantitative results on region recognition

Table 2: Enhancement of dense representation. We report the Top1 and Top5 mean accuracy on classifying boxes and panoptic masks (thing and stuff).

#	Model	Method	Region Proposals	Bo	xes	Thing Masks		Stuff Masks	
				Top1	Top5	Top1	Top5	Top1	Top5
1	ViT-B/16	-	-	18.2	33.2	20.6	36.5	18.4	43.5
2	ViT-B/16	CLIPSelf	×	72.1	91.3	74.4	91.8	46.8	80.2
3	ViT-B/16	CLIPSelf	1	74.0	92.6	76.3	92.8	36.8	75.0

• Quantitative results on open-vocabulary dense prediction tasks

Table 3: Results on open-vocabulary object detection. 'L', 'B' and 'H' in ViT-based methods stand for base, large and huge model sizes. '/16' and '/14' stand for the downsample ratio of input images.

(a) OV-COCO benchmark

(b) OV-LVIS benchmark

Method	Backbone	AP ₅₀ ^{novel}	Method	Backbone	mAP _r
ViLD (Gu et al., 2021)	RN50	27.6	ViLD (Gu et al., 2021)	RN50	16.6
Detic (Zhou et al., 2022b)	RN50	27.8	OV-DETR (Zang et al., 2022)	RN50	17.4
F-VLM (Kuo et al., 2023)	RN50	28.0	BARON-KD (Wu et al., 2023a)	RN50	22.6
OV-DETR (Zang et al., 2022)	RN50	29.4	CORA+ (Wu et al., 2023c)	RN50x4	28.1
BARON-KD (Wu et al., 2023a)	RN50	34.0	F-VLM (Kuo et al., 2023)	RN50x64	32.8
CORA (Wu et al., 2023c)	RN50x4	41.7	PromptOVD (Song & Bang, 2023)	ViT-B/16	23.1
CORA+ (Wu et al., 2023c)	RN50x4	43.1	OW-ViT (Minderer et al., 2022)	ViT-L/14	25.6
PromptOVD (Song & Bang, 2023)	ViT-B/16	30.6	RO-ViT (Kim et al., 2023b)	ViT-L/16	32.4
RO-ViT (Kim et al., 2023b)	ViT-L/16	33.0	CFM-ViT (Kim et al., 2023a)	ViT-L/16	33.9
CFM-ViT (Kim et al., 2023a)	ViT-L/16	34.1	RO-ViT (Kim et al., 2023b)	ViT-H/16	34.1
F-ViT	ViT-B/16	17.5	F-ViT	ViT-B/16	11.5
F-ViT+CLIPSelf	ViT-B/16	37.6	F-ViT+CLIPSelf	ViT-B/16	25.3
F-ViT	ViT-L/14	24.7	F-ViT	ViT-L/14	24.2
F-ViT+CLIPSelf	ViT-L/14	44.3	F-ViT+CLIPSelf	ViT-L/14	34.9

• Quantitative results on open-vocabulary dense prediction tasks

Mathad	Madal	ADE	E-150	ADE-847		PASCAL Context	
Methou	Model	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc
SAN (Xu et al., 2023b)	ViT-B/16	27.5	45.6	10.1	21.1	53.8	73.0
SAN (Xu et al., 2023b)	ViT-L/14	32.1	50.7	12.4	25.2	57.7	77.6
Cat-Seg (Cho et al., 2023)	ViT-B/16	27.2	41.2	8.4	16.6	57.5	74.0
Cat-Seg (Cho et al., 2023)	ViT-L/14	31.5	46.2	10.8	20.5	62.0	78.3
Cat-Seg+CLIPSelf	ViT-B/16	29.0	46.0	9.3	20.1	58.0	75.3
Cat-Seg+CLIPSelf	ViT-L/14	34.5	54.8	12.4	25.4	62.3	80.7

Table 4: Results on open-vocabulary semantic segmentation.

• Quantitative results on open-vocabulary dense prediction tasks

Table 5: Results on open-vocabulary panoptic segmentation. † means the results are obtained by running ODISE's officially released code and model.

Mathad	Model	Score		COCO Panoptic			ADE20K		
Method		CLIP	Pred	PQ	mAP	mIoU	PQ	mAP	mIoU
ODISE (Xu et al., 2023a)†	ViT-L/14	1	X	27.6	26.2	23.7	15.3	9.8	17.3
ODISE (Xu et al., 2023a)†	ViT-L/14	1	1	45.3	38.1	52.3	22.9	13.4	28.5
ODISE+CLIPSelf	ViT-L/14	1	X	35.1	30.9	36.7	19.5	10.6	24.5
ODISE+CLIPSelf	ViT-L/14	1	1	45.7	38.5	52.3	23.7	13.6	30.1

- Open-Vocabulary Dense Prediction
- CLIP Image and Dense Representation
- CLIPSelf
- Experiments
- Visualization & Analysis

Visualization & Analysis

• K-Means visualization of the enhanced dense representation

Figure 4: K-Means visualization of the dense feature maps of CLIP ViT. We show the raw images, the K-Means results of the original model, and those of our fine-tuned model by CLIPSelf.

Visualization & Analysis

• Qualitative results on dense prediction tasks

Figure A2: Visualization of object detection results. The red boxes are for the novel categories and the blue boxes are for the base categories.

Visualization & Analysis

• Qualitative results on dense prediction tasks

Figure A3: Visualization of image segmentation. The images are from ADE20k (Zhou et al., 2017).

Thank You!

