Simplicial representation learning Learnable featurizations with neural *k*-forms

Kelly Maggs

10th April 2024

Kelly Maggs (EPFL)

Neural k-forms

10th April 2024

1/22

Collaborators

Bastian Rieck

Celia Hacker

Figure: Collaborators

Kelly	Maggs	(EPFL)

Neural k-forms

э

Overview

Kelly Maggs (EPFL)

Neural k-forms

10th April 2024

イロト イヨト イヨト イヨト

3/22

æ

Overview

Data

Set of *k*-simplicies $\varphi : \Delta^k \to \mathbb{R}^n$ in common ambient space

Learnable feature maps

Kelly Maggs (EPFL)

Differential *k*-forms $\omega \in \Omega^k(\mathbb{R}^n)$ on the ambient space.

Featurization/representation

Integration

$$\omega:\varphi\mapsto\int_{\varphi}\omega\in\mathbb{R}$$

4	ロン 《國》 《문》 《문》 《문	996
Neural k-forms	10th April 2024	4/22

I: Motivation – Perceptrons

æ

Perceptrons

Setup

- **①** Data: vectors $u \in \mathbb{R}^n$ i.e $u : \Delta^0 \to \mathbb{R}^n$
- **2** Features: dual vectors $v^* \in Hom(\mathbb{R}^n, \mathbb{R})$

O Pairing:

$$\mathsf{Hom}(\mathbb{R}^n,\mathbb{R})\otimes\mathbb{R}^n\to\mathbb{R};\qquad (v^*,u)\mapsto\langle v,u\rangle$$

Picture on board.

э

Perceptrons

Properties

Finitely parametrized: feature maps

$$f(v): u \mapsto \sum v_i u_i$$

2 Learnable: loss gradients exist

$$\frac{\partial}{\partial v_i} \mathcal{L}f(v)(u)$$

Generalizable: defined over ambient space

$$f(\mathbf{v}): \mathbb{R}^n \to \mathbb{R}$$

Kelly Maggs	(EPFL)
-------------	--------

3 > < 3 >

II: Singular simplices as data

Kelly Maggs (EPFL)

Neural k-forms

10th April 2024

8/22

2

Simplicial data

Simplicial data

Dataset: Maps

$$\varphi:\Delta^n o \mathbb{R}^n$$

into a common ambient space.

(Generalized) Simplicial data

Dataset: Singular chains

$$C_k^{sing}(\mathbb{R}^n) = \mathbb{R}\{\varphi : \Delta^k \to \mathbb{R}^n\} = \lambda_1 \varphi_1 + \ldots + \lambda_k \varphi_k.$$

Question

What's a good space of feature maps for these?

Kelly	Maggs	(EPFL)
-------	-------	--------

Neural k-forms

10th April 2024

9/22

イロト イヨト イヨト イヨト

Feature maps for simplices

Question

What's a good space of feature map for these?

Candidate

Singular cochains

$$C_k^{sing}(\mathbb{R}^n)^* = \operatorname{Hom}(C_k^{sing}(\mathbb{R}^n),\mathbb{R})$$

Problems

- ② Difficult to parametrize.
- Solution: differential forms.

10/22

A B F A B F

III: Differential Forms as Feature Maps

Kelly	/ Mag	ggs (EP	FL)

Image: A matrix

Exterior Algebra

Definition

The free exterior algebra $\Lambda(dx_1, \ldots, dx_n)$ is the free tensor algebra

 $T(dx_1,\ldots,dx_n)/\sim$

with the relation $dx_i \wedge dx_j \sim -dx_j \wedge dx_i$.

:

\mathbb{R}		$\operatorname{dim} = 0$
dx _i	1 ≤ <i>i</i> ≤ <i>n</i>	$\operatorname{dim} = 1$
$dx_i \wedge dx_j$	1 ≤ <i>i</i> < <i>j</i> ≤ <i>n</i>	$\operatorname{dim} = 2$
$dx_i \wedge dx_j \wedge dx_k$	$1 \le i < j < k \le n$	$\operatorname{dim}=3$

:

Exterior Algebra

Intuition

Algebraic model of (infinitesimal) determinants.

$$dx_i \wedge dx_i : T_{\rho}\mathbb{R}^n \otimes T_{\rho}\mathbb{R}^n \to \mathbb{R};$$

$$i \begin{vmatrix} * & * \\ * & * \\ * & * \\ * & * \\ * & * \\ * & * \end{vmatrix} \mapsto \det\left(i \begin{bmatrix} * & * \\ j \begin{bmatrix} * & * \\ * & * \end{bmatrix}\right)$$

Note

$$dx_i \wedge dx_j = -dx_j \wedge dx_i$$

Kelly Maggs (EPFL)

Neural k-forms

10th April 2024 13/22

э

Infinitesimal volume elements

Figure: Infinitesimal determinants/volume elements.

Kelly Maggs (EP	FL)
---------------	----	-----

Neural k-forms

D → < 2 → < 2 → 10th April 2024

14/22

Differential forms

Definition

The **differential forms** on \mathbb{R}^n are

$$\Omega^{k}(\mathbb{R}^{n}) := \mathcal{C}^{\infty}(\mathbb{R}^{n}) \otimes \Lambda(dx_{1}, \ldots, dx_{n})$$

f0-forms
$$f_i \cdot dx_i$$
 $1 \le i \le n$ 1-forms $f_{i,j} \cdot dx_i \land dx_j$ $1 \le i < j \le n$ 2-forms $f_{i,j,k} \cdot dx_i \land dx_j \land dx_k$ $1 \le i < j < k \le n$ 3-forms

÷

÷

э

Differential forms

Figure: $f_l(p)$ scales volume in *I*-subspace at $p \in \mathbb{R}^n$.

Key point

- **()** The *k*-forms $\sum_{I} f_{I} \cdot dx_{I}$ are determined by $f_{I} \forall I = i_{1} < \ldots < i_{k}$
- Provide a construction of the parametrized of the parametrized

Integrating Differential Forms

Featurization

The *integral* of a *k*-form against a *k*-simplex $\varphi : \Delta^k \to \mathbb{R}^n$ is

$$\int : \Omega^k(\mathbb{R}^n) \otimes C^{sing}_k(\mathbb{R}^n) \to \mathbb{R}; \qquad (\omega, \varphi) \mapsto \int_{\varphi} \omega = \int_{\Delta^k} \varphi^* \omega$$

Kelly	/ Maggs	(EPFL)
		· /

< ロ > < 同 > < 回 > < 回 >

Learnable Differential form

Definition

A neural k-form consists of

• $\binom{n}{k}$ MLPs

$$f_l(\mathbf{W}): \mathbb{R}^n \to \mathbb{R}; \quad p \mapsto \sigma(\mathbf{W}p)$$

2 A differential k-form
$$\omega = \sum_{I} f_{I}(\mathbf{W}) \cdot dx_{I}$$
.

Properties

• Finitely parametrized by W for each *I*.

2 Feature maps
$$\int \omega : (\varphi : \Delta^k \to \mathbb{R}^n) \mapsto \int_{\varphi} \omega$$
.

Gradients exist

$$\frac{\partial}{\partial \mathbf{W}} \mathcal{L}\bigg(\int \omega\bigg)(\varphi).$$

ъ

Experiments

Kelly Maggs (EPFL)

Neural k-forms

10th April 2024

イロト イヨト イヨト イヨト

19/22

Э.

Classification of Paths

Paths in \mathbb{R}^2

- Three classes of paths
- Learn three vector fields (1-forms)
- Integration over three vector fields \Rightarrow path vectorized in \mathbb{R}^3 .

(a) Paths.

(b) Randomly initialised 1-forms.

12 11		
KOUV	Magaac /	
T CEILV	IVIAUUS I	
		()

Neural k-forms

10th April 2024

イロト イ団ト イヨト イヨト

20/22

Classification of Paths

Paths in \mathbb{R}^2

- Three classes of paths
- Learn three vector fields (1-forms)
- Integration over three vector fields \Rightarrow path vectorized in \mathbb{R}^3 .

(a) Learned 1-forms corresponding to paths in each class. (b) Rep

(b) Representations.

Kelly I	/laggs	(EPFL)
---------	--------	--------

Neural k-forms

10th April 2024	21/22
-----------------	-------

Graph Learning

Graph Learning Problems

- Data is graphs with (non-equivariant) node embeddings.
- Classify using learnable neural 1-forms integrated on edges.

Table: Results (mean AUROC and standard deviation of 5 runs) on benchmark datasets from the 'MoleculeNet' database Wu18a.

	Params.	BACE	BBBP	HIV
GAT	135K	69.52 ± 17.52	76.51 ± 3.36	56.38 ± 4.41
GCN	133K	66.79 ± 1.56	73.77 ± 3.30	68.70 ± 1.67
GIN	282K	42.91 ± 18.56	61.66 ± 19.47	55.28 ± 17.49
NkF (ours)	9K	83.50 ± 0.55	86.41 ± 3.64	76.70 ± 2.17

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

22/22