e - L[S Huggingface
::f Weights & Biases

code style black

SCAN ME
TL;DR

e = Single-file PPO and IMPALA implementation

— Each file is about 700 LOC (not counting evaluation code)
("4 Benchmarked implementation
— Evaluated on 57 Atari games, outperformed Moolib and
Monobeast's IMPALA
Highly reproducible
— Reproducible across different hardware settings
- @ Implemented with JAX and EnvPool
— Highly efficient; scalable to hundreds of GPUs

IMPALA'’s reproducibility issues

« (5 In IMPALA, what happens if the learner updates while the
actor is in mid-rollout?

IMPALA Actor-Learner Architecture Cleanba’s architecture

batch_size = 32
agent = Agent ()
data_Q = queue (max_size=1)
param_Q = queue (max_size=1)
def actor():
for i in range (1,
if i != 2:
params = param_Q.get ()
data = rollout (params, batch_size)
data_Q.put (data)
def learner():
for _ in range(l, ITER):
data = data_Q.get ()
agent.learn (data)
param_Q.put (agent.param)
param_Q.put (agent .param)
thread (actor) .start ()
thread(learner) .start ()

batch_size = 32
agent = Agent ()
data_Q = queue ()

def actor():
while True:
data = rollout (agent.param, 1)

ITER) :

data_Q.put (data)
def learner|():
for _ in range(l, ITER):
data = data_Q.get_many (batch_size)
agent.learn (data)
broadcast_to_actors (agent.param)
for _ in range (num_actors):
thread (actor) .start ()
thread (learner) .start ()

« € The policies that create learner trajectories are
non-deterministic: same hyperparameters could yield
unreproducible learning curves

- Monobeast IMPALA - Monobeast IMPALA (Learner Delayed 1s)

Pong-v> Pong-v5

80
= 103 A

E S 60
9 5
01 p=

= 2 40
3 Z
'S_ —-10)
-

;U 20 -
-20

4M 6M 8M 10M 10M

C+an

oM 2M oM 2M aM 6M 8M

Cleanba: A Reproducible and Efficient Distributed Reinforcement

Learning Platform

Repo:

Cleanba’s architecture

» 2; Simple idea to ensure reproducibility; always learn from
the second latest policy

Iteration 1 2 3
Synchronous Arch. 1 —> Dy, ™1 — W2 o — Dr, M2 e L Dr, 73 = T4

™1 ™o w3
Cleanba’s Arch., Actor i —> Dy, M1 —> Dy, 2 —> Dy,
Cleanba’s Arch., Learner T — Mo

Evaluation

» & Outperforms moolib and monobeast’s IMPALA
— Same Atari wrappers (e.g., sticky actions)
— Base hardware setting (1 A100, 10 CPU) and Workstation
setting.
— Using rliable for plotting median, IQM, mean, and optimality gap

—e— (Cleanba IMPALA, 1 A100, 10 CPU
—eo— (leanba PPO (Sync), 1 A100, 10 CPU

—e— Monobeast IMPALA, 1 A100, 10 CPU
—e— Moolib IMPALA, 1 A100, 10 CPU

5
5 1
]
=
0
01\ 10M 20M 30M 40M 50M 0 200 400 600 800
Steps Time (m)
Median IQM Mean Optimality Gap
Monobeast IMPALA, 1 A100, 10 CPU I {1
Moolib IMPALA, 1 A100, 10 CPU I I I I
Cleanba IMPALA, 1 A100, 10 CPU- | | | |
Cleanba PPO (Sync), 1 A100, 10 CPU 1 1]
1.2 14 16 1.8 1.50 1.75 2.00 10 12 14 0.25 0.27 0.30 Q.32

Normalized Score

—eo— (Cleanba IMPALA, 8 A100, 46 CPU
—e— (leanba PPO (Sync), 8 A100, 46 CPU

—e— Monobeast IMPALA, 1 A100, 80 CPU
—o— Moolib IMPALA, 8 A100, 80 CPU

G
= 1
O
=
0
oM 10M 20M 30M 40M 50M 0 20 40 60 80 100
Steps Time (m)
Median IQM Mean Optimality Gap
Monobeast IMPALA, 1 A100, 80 CPU] i === i
Moolib IMPALA, 8 A100, 80 CPU | I | |
Cleanba IMPALA, 8 A100, 46 CPU | I I I
Cleanba PPO (Sync), 8 A100, 46 CPU I |) E— i iN
1.351.501.65180 14 1.6 1.8 2.0 6 9 12 15 0.24 0.27 0.30 0.33

Normalized Score

Shengyi Huang, Jiayi Weng, Rujikorn
Charakorn, Min Lin, Zhongwen Xu,
Santiago Ontanon

Drexel University, Hugging Face
Google, VISTEC, Sea Al Lab
Tencent Al Lab

 \\, Reproducible across different hardwares
— Tested with different number of GPUs and TPUs
— ldentical learning curves; just different runtimes

— 4 A100 - 4 TPUV4 cores - 8 TPUV4 cores

—— 8 A100

- baseline (1 A100)
— 2 A100

Breakout-v5 Breakout-v5

800 A 800 -
-
S 600 - 600 -
et
i
o 400 400 |
3
@ 200 - 200 -
Qo
L
0 1 Ll 1 1 1 1 1 0 :
OM 10M 20M 30M 40M 50M 0 50 100 150
Steps Time (m)

e ¢¢) To sync or not to sync
— PPO (sync) is slower but has high data efficiency
— IMPALA is faster than IMPALA (sync); same data efficiency

—eo— (Cleanba IMPALA (Sync), 8 A100, 46 CPU
—e— (Cleanba IMPALA, 8 A100, 46 CPU

—e— (CleanRL PPO (Sync), 1 A100, 10 CPU
»— Cleanba PPO (Sync), 8 A100, 46 CPU
—e— (Cleanba PPO, 8 A100, 46 CPU

oM 10M 20M 30M 40M 0 50 100 150 200
Steps Time (m)
Median QM Mean Optimality Gap
CleanRL PPO (Sync), 1 A100, 10 CPU EE | S| (S| [) ()|
Cleanba PPO (Sync), 8 A100, 46 CPU I | I I
Cleanba PPO, 8 A100, 46 CPU | 1 1 1
Cleanba IMPALA (Sync), 8 A100, 46 CPU i i = [

(-] [
104 11.2 12.0 0.24 0.26 0.28

Cleanba IMPALA, 8 A100, 46 CPU 1
135 .1.50 1.65 1.BO

1.80 1.95 2.10
Normalized Score

0 ‘y Cleanba PPO can scale to hundreds of GPUs

Cleanba PPO (128 GPU)
—— 960 CPU
FPS=1768070

Cleanba PPO (64 GPU)
—— 480 CPU
FPS=1013163

Cleanba PPO (32 GPU)
—— 240 CPU
FPS=511844

Cleanba PPO (16 GPU)
—— 120 CPU
FPS=258754

Breakout-v5 Breakout-v5

800 A 800 A

600 A 600
400 - 400 -

200 - 2004 |

Episodic Return
Episodic Return

200M 400M 600M 800M

Time (m) Steps

Acknowledgment

e J We thank Stability Al's HPC, Hugging Face's cluster,
and Google's TPU Research Cloud for computes

https://github.com/vwxyzjn/cleanba

