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e = Single-file PPO and IMPALA implementation

— Each file is about 700 LOC (not counting evaluation code)
("4 Benchmarked implementation
— Evaluated on 57 Atari games, outperformed Moolib and
Monobeast's IMPALA
Highly reproducible
— Reproducible across different hardware settings
- @ Implemented with JAX and EnvPool
— Highly efficient; scalable to hundreds of GPUs

IMPALA'’s reproducibility issues

« (5 In IMPALA, what happens if the learner updates while the
actor is in mid-rollout?

IMPALA Actor-Learner Architecture  Cleanba’s architecture

batch_size = 32
agent = Agent ()
data_Q = queue (max_size=1)
param_Q = queue (max_size=1)
def actor():
for i in range (1,
if i != 2:
params = param_Q.get ()
data = rollout (params, batch_size)
data_Q.put (data)
def learner():
for _ in range(l, ITER):
data = data_Q.get ()
agent.learn (data)
param_Q.put (agent.param)
param_Q.put (agent .param)
thread (actor) .start ()
thread(learner) .start ()

batch_size = 32
agent = Agent ()
data_Q = queue ()

def actor():
while True:
data = rollout (agent.param, 1)

ITER) :

data_Q.put (data)
def learner|():
for _ in range(l, ITER):
data = data_Q.get_many (batch_size)
agent.learn (data)
broadcast_to_actors (agent.param)
for _ in range (num_actors):
thread (actor) .start ()
thread (learner) .start ()

« € The policies that create learner trajectories are
non-deterministic: same hyperparameters could yield
unreproducible learning curves

- Monobeast IMPALA - Monobeast IMPALA (Learner Delayed 1s)
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Cleanba: A Reproducible and Efficient Distributed Reinforcement

Learning Platform

Repo:

Cleanba’s architecture

» 2; Simple idea to ensure reproducibility; always learn from
the second latest policy
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Evaluation

» & Outperforms moolib and monobeast’s IMPALA
— Same Atari wrappers (e.g., sticky actions)
— Base hardware setting (1 A100, 10 CPU) and Workstation
setting.
— Using rliable for plotting median, IQM, mean, and optimality gap

—e— (Cleanba IMPALA, 1 A100, 10 CPU
—eo— (leanba PPO (Sync), 1 A100, 10 CPU

—e— Monobeast IMPALA, 1 A100, 10 CPU
—e— Moolib IMPALA, 1 A100, 10 CPU
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 \\, Reproducible across different hardwares
— Tested with different number of GPUs and TPUs
— ldentical learning curves; just different runtimes

— 4 A100 - 4 TPUV4 cores - 8 TPUV4 cores

—— 8 A100

- baseline (1 A100)
— 2 A100
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e ¢¢) To sync or not to sync
— PPO (sync) is slower but has high data efficiency
— IMPALA is faster than IMPALA (sync); same data efficiency

—eo— (Cleanba IMPALA (Sync), 8 A100, 46 CPU
—e— (Cleanba IMPALA, 8 A100, 46 CPU

—e— (CleanRL PPO (Sync), 1 A100, 10 CPU
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0 ‘y Cleanba PPO can scale to hundreds of GPUs

Cleanba PPO (128 GPU)
—— 960 CPU
FPS=1768070

Cleanba PPO (64 GPU)
—— 480 CPU
FPS=1013163

Cleanba PPO (32 GPU)
—— 240 CPU
FPS=511844

Cleanba PPO (16 GPU)
—— 120 CPU
FPS=258754
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