

Effective pruning of web-scale datasets based on complexity of concept clusters

Amro Abbas*

Evgenia Rusak*

Kushal Tirumala

Wieland Brendel

Ari Morcos

Task: Improve training efficiency

Task: Improve training efficiency

How many examples do we need to learn a concept?

Cluster A

Dataset

Cluster B

How many examples do we need from each cluster?

Density-based pruning

Density-based pruning

Density-based pruning

Density-based pruning: Method summary

- 1. Deduplicate LAION / DataComp.
- 2. Calculate image embeddings with a pretrainer encoder.
- 3. Cluster the embeddings with kmeans.
- 4. Calculate d_{intra} and d_{inter} for each cluster.
- 5. Calculate the number of examples per cluster N_i.
- 6. Keep the furthest N_i samples from each cluster centroid.

Results on DataComp Medium

Task: Train a CLIP model on 128M examples seen.

Method	Size	ImageNe	t ImageNet dist. shi	fts VTAB	Retrieval	Average
TMARS	25M	33.00	27.00	36.30	22.50	36.10
Image-based \cap CLIP Score (L/14 top 30%)	14M	29.70	23.90	34.60	23.10	32.80
CLIP Score (L/14 top 30%)	38M	27.30	23.00	33.80	25.10	32.80
Ours (DeDup, 80% + CLIP-L/14 Score, 50% + DBP)	19.2M	33.35	24.73	37.26	26.82	34.52
Ours (DeDup, 80% + CLIP-L/14 Score, 40% + DBP)	19M	32.02	25.74	37.26	26.80	35.35

Results on LAION-400M

Key message: Taking the complexity of different concepts into account when designing pruning methods can <u>reduce redundancy</u> and <u>improve training efficiency</u>.

Path forward: Combine different pruning techniques.

Thank you for your attention \odot .

Meet me at my poster!

