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Key contributions: 

1. This paper characterizes a prevalent but under-explored label 
issue: Annotation mismatch. 

2. To mitigate annotation mismatches, we propose a data-centric 
approach that transfers the labels in the datasets “before 
training any detector”. 

3. The proposed approach is agnostic to detector learning 
algorithms & detector architectures.



Object detection datasets are everywhere 

Aerial Images [3]

Autonomous Driving [1] Ego Camera — Hand detection [2]

Underwater [4] Agriculture [5]



Label quality matters

Lower label quality leads to worse detector performances [6,7]
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Are they truly “correct” correct?
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Which labels are more correct?
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They are all “correct”
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Prevalent annotation mismatches
Class semantics
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If Annotation Mismatches are the Answers, 
Then What is the Question?
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If Annotation Mismatches are the Answers, 
Then What is the Question?
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Application: Supervised Domain Adaptation
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Prabhu et al., Bridging the Sim2Real gap with CARE: Supervised Detection Adaptation with Conditional Alignment and Reweighing

Fully labeled, Annotation mismatches



Application: Supervised Domain Adaptation
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Problem Formulation — Label Transfer
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*Please refer to our paper for a more formal 
problem formulation in our paper.

Data-centric key benefits: Agnostic to downstream detectors



Source 
Dataset(s)

Transfer “labels”
Source 

Dataset(s)

1. No paired labels

Task requirements 

1. Translate bounding boxes 

2. Adjust class labels 

3. Remove detection labels 

4. Add detection labels

2. Complex task

Challenges
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Experimental Results

Evaluation: 

- Evaluate on 4 transferring scenarios involving 5 real-world 
and 2 synthetic datasets 

- Evaluate 3 downstream detectors

Results:  

By pre-processing the source labels with LGPL, detectors 
always improve, increasing 2.7, 1.68, 1.2 mAP in YOLOv3, 
Deformable DETR and Faster-RCNN, respectively
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