

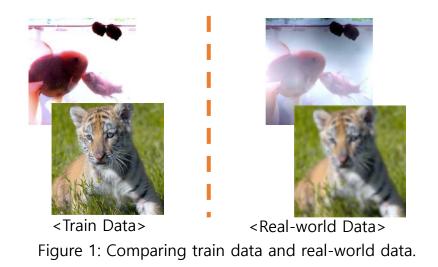
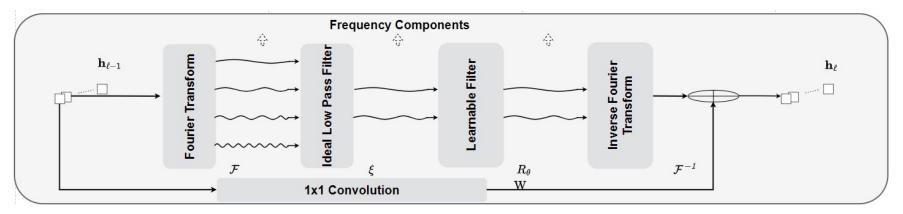
PAC-FNO: Parallel-Structured All-Component Fourier Neural Operators for Recognizing Low-Quality Images

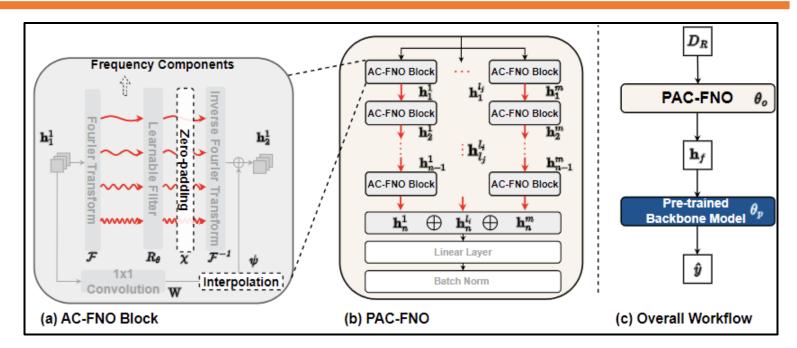
Jinsung Jeon¹, Hyundong Jin¹, Jonghyun Choi², Sanghyun Hong³, Dongeun Lee⁴, Kookjin Lee⁵, Noseong Park⁶

¹Yonsei University, ²Seoul National University, ³Oregon State University, ⁴Texas A&M University-Commerce, ⁵Arizona State University, ⁶KAIST

- Motivation
- Related Works
- PAC-FNO
- Experiments
- Results

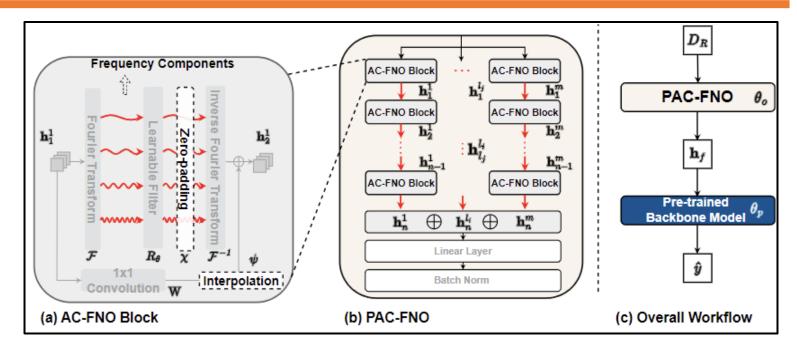
- When deep learning models are deployed to the real world, they are likely to face low-quality inputs at inference (e.g., low-resolution or natural input variations)
- The use of such **low-quality inputs significantly degrades the performance** of visual recognition models.


Figure 2: Performance degradation in ImageNet-1k and ImageNet-C/P (Fog).

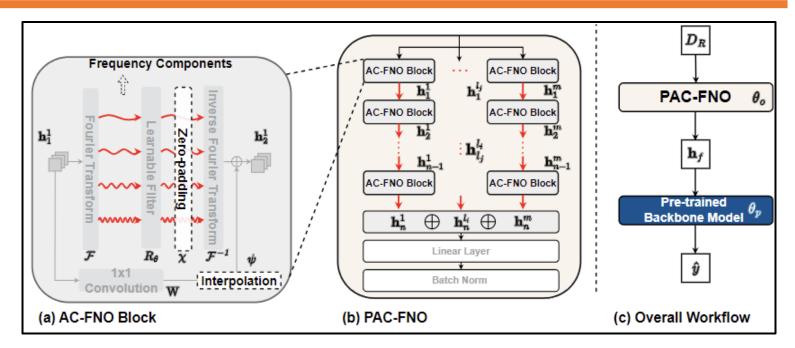
Related Works

- Fourier Neural Operators (FNOs) which achieve remarkable performance in solving PDEs, are mathematically defined under the infinite-dimensional continuous space regime and for this reason, they can process various resolutions of the continuous space without model change.
- For efficiency, FNOs restrict the size of the learnable parameter R_{θ} by using an ideal low-pass filter ξ .


PAC-FNO: Parallel-Structured All-Component Fourier Neural Operators for Recognizing Low-Quality Images

(a) All-Component-FNO (AC-FNO) Block

- In the case of images, high-frequency information sometimes plays an important role in image classification, especially when detailed information is required (type of bird, type of car, etc). To this end, we propose an AC-FNO block without any band pass filters.
- AC-FNO blocks use all frequency components and rely on Zero-padding and Interpolation to construct the images for the target resolution.
- \mathcal{F} is a Fourier transform that transforms the hidden vector into the frequency domain, χ a zero-padding, R_{θ} is a learnable filter, ψ is an interpolation and W is a 1x1 convolutional operation.


PAC-FNO: Parallel-Structured All-Component Fourier Neural Operators for Recognizing Low-Quality Images

(b) Parallel Configuration of AC-FNO Blocks

- To increase the capacity to learn various types of input variations, we propose to configure AC-FNO blocks in a parallel structure.
- There are *n* x *m* AC-FNO blocks, where *n* is the number of stages and *m* is the number of parallel AC-FNO blocks in a stage.

PAC-FNO: Parallel-Structured All-Component Fourier Neural Operators for Recognizing Low-Quality Images

Two-stage Learning Algorithm

- First stage: We jointly train the PAC-FNO and the pre-trained backbone model together using only the target resolution for which the backbone model was trained.
- Second stage: We fine-tune the well-harmonized model with images in low resolution to generate a unified hidden space for all resolutions. In this stage, the backbone model is frozen.

Experiments

Table 1: Performance of PAC-FNO on the low-resolution tasks using ImageNet-1k

Model	Method	Resolution								N	Model	Method	Resolution								
NIOUCI	Wiethou	28	32	56	64	112	128	224	299				28	32	56	64	112	128	224	25	
ResNet-18	Resize Fine-tune DRLN DRPN FNO UNO A-FNO	1.01 0.22 31.6 40.2 39.9	2.15 - 45.2 45.3	10.2 17.1 55.6 59.1 58.9	16.3 	63.7 34.5 62.8 67.5 67.6 67.1 66.9	50.6 - - 68.5 68.1	65.0 69.8 69.8 70.1 69.4) - 3 - 3	Vi	T-B16	Resize Fine-tune DRLN DRPN FNO UNO A-FNO PAC-FNO	39.8 3.75 52.2 39.1 43.7 54.9	48.5 46.6 50.6 59.5	42.0 73.0 66.2 67.9 72.3	69.6 - - 70.3 74.1	77.3 77.0 80.0 77.1 77.9 78.3	78.4 - 78.0 78.8 78.9	81. 81. 81. 79. 80. 79.	1 - 1 - 7 - 2 - 5 -	
Inception-V3	UNO	16.7 39.6 48.9 42.2 33.4	22.0 47.2 54.0 48.1 39.6	48.6 63.7 68.5 65.4 59.6	53.9 69.8 70.2 68.0 62.7	69.5 72.9 74.9 74.7 71.0	71.8 73.3 76.5 75.5 72.1	-	77.3 77.5 78.4 77.3 74.9 78.4	Conv	NeXt-Tiny	Resize Fine-tune DRLN DRPN FNO UNO A-FNO PAC-FNO	0.30 40.7 42.8 58.6 48.3	62.3 48.9 62.9 53.5	65.8 25.1 68.2 67.4 73.7 68.1	76.0 - - 75.5 70.5	76.4 71.8 79.4 76.5 79.1 75.9	80.7 77.4 79.7 76.6	81. 82. 82. 79. 80. 78.	8 5 2 6	

Table 2: Performance of PAC-FNO on low-resolution tasks using fine-grained datasets and input variation tasks

Dataset	Method	Resolution							Variation	Method	Resolution						
		28	32	56	64	112	128	224	variation	Wethod	24	32	54	64	112	128	3 22
Oxford-IIIT Pets	Resize Fine-tune DRLN DRPN FNO UNO A-FNO PAC-FNO	32.6 3.37 41.5 19.1 11.1 27.0	41.1 54.0 15.7 33.3	73.2 36.8 84.2 60.6 43.2 63.5	79.3 - 70.2 50.5 70.2	91.0 88.1 92.6 86.7 80.1 85.2	91.5 - 90.4 83.8 86.9	90.3 89.1	Fog	Resize Fine-tune DRLN DRPN FNO UNO A-FNO PAC-FNO	23.2 0.16 0.67 14.4 24.6 11.0	28.2 - - - - - - - - - - - - - - - - - - -	6.54 0.99 38.9 46.8 33.4	51.4 - 43.5 49.5 38.3	61.0 33.5 1.32 56.6 59.2 51.9	62.1 58.4 60.4 53.0	2 63. 58. 58. 4 60. 4 59. 5 53.
Flowers	Resize Fine-tune DRLN DRPN FNO UNO A-FNO PAC-FNO	44.3 9.92 64.5 25.3 23.2 26.8	51.1 32.8 30.2 33.6	78.8 53.4 89.0 65.9 64.5 63.7	81.9 - 73.0 71.7 70.0	92.5 91.3 95.0 91.7 90.8 90.8 86.2	5 94.0 3 - 7 93.7 3 92.6 2 88.8	95.9 95.9 96.6 96.1 91.9	Brightness	Fine-tune DRLN DRPN	42.8 6.64 3.09 34.9 50.8 37.6	48.9 40.7 55.6 43.2	35.71 1.08 59.4 66.7 59.4	68.1 - 62.6 67.9 62.5	73.5 56.1 8.01 70.0 71.4 68.8	74.4 71.2 72. 69.8	175 58 58 373 73 72 370

Resize: Resize is a method that directly feeds the resized images to a pre-trained classification model using interpolation

Fine-tune: Fine-tune is a method of fine-tuning the pre-trained classification model with the resized images.

DRLN and DRPN: These two models are representative models capable of up to 8 times super-resolution (SR). With SR models, low-resolution images are upscaled to the target resolution and fed into a pre-trained model.

FNO, UNO, A-FNO: These three models are Fourier neural operator models. These models are most similar to our PAC-FNO and are trained by our proposed training method for fair comparison.

Experiments

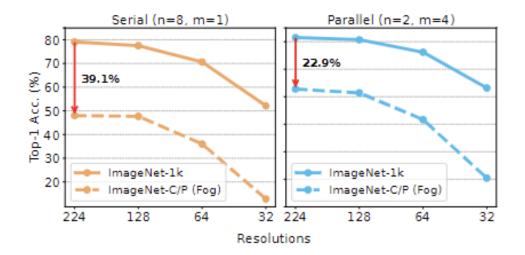


Figure 3: Benefit of parallel structure.

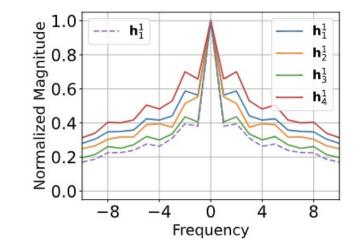


Figure 4: Comparison of spectral responses according to the configuration of the AC-FNO block

Results

- We proposed **parallel-structured and all-component Fourier neural operators** (PAC-FNOs) for visual recognition under low-quality images.
- To this end, we design i) an **AC-FNO** and ii) a **parallel** configuration of AC-FNO blocks and also propose a **two-stage training algorithm**.
- As a result, PAC-FNO provides two advantages over existing methods:

 (i) It can handle both low-resolution and input variations typically observed in low-quality images with a single model; (ii) One can attach PAC-FNO to any visual recognition model and fine-tune it.
- In the evaluation with four visual recognition models and seven datasets, we show that PAC-FNO achieves high accuracy for various resolutions and input variations.

PAC-FNO: Parallel-Structured All-Component Fourier Neural Operators for Recognizing Low-Quality Images

Presenter: Jinsung Jeon

Email: jjsjjs0902@yonsei.ac.kr, Homepage: https://sites.google.com/view/jsjeon

Tue 7 May 10:45 a.m. CEST — 12:45 p.m. CEST, Hall B

