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Multi-Channel Imaging: Challenge 1

RGB imaging

Multi-channel imaging

The example zebra image exhibits high
correlations across its RGB channels.
Source: ImageNet

In cell imaging, different channels correspond to different In satellite imaging, different signals are acquired from
stains. They reveal different biological properties. different satellites.
Source: JUMP-CP Source: GIS Geography

Challenge 1: In multi-channel imaging, different channels often exhibit
independent knowledge — modeling cross-channel interactions
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Multi-Channel Imaging: Challenge 2

Available channels
Cell imaging ] ]
datasets
Phalloidin MitoTracker Brightfield 1 Brightfield 2 Brightfield 3
JUMP-CP
RxRx1
RxRx19a

References: https://jump-cellpainting.broadinstitute.ora/ https://www.rxrx.ai/datasets

Challenge 2: Channel availabilities can be very different across datasets
— modeling data with different input channels
& enhancing robustness when there are missing channels
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ChannelViT for cross-positional and cross-channel
reasoning
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Input image ChannelViT creates patch tokens

(8-channel) for each individual channel. X1, X[,

—

e ChannelViT creates ‘image tokens™ by looking at all 1-channel image patches.
e Hierarchical channel sampling (HCS) for efficient training and robust generalization.
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ViT vs. ChannelViT
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VIiT (left): e  Map information across all channels linearly into
PatchEmbedding(x[i]) = PosEmbedding, + W - x[i] a single patch token;

° Parameters are not shared across channels.

ChannelViT (right):
PatchEmbedding(x[c, i]) =| PosEmbedding. + W ¢ X[c, i] |+ |ChannelEmbedding_

(parameters shared across channels) (channel-specific parameters)
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ImageNet

B viT-S/16 ViT-S/16 w. HCS ChannelViT-S/16 w. HCS [l ViT-S/16 (oracle)
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1. HCS is crucial for improving test-time channel robustness;

2. ChannelViT consistently outperforms ViT and closes the gap to the oracle experts
which are trained on the specific channel configuration that the model is tested on.
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JUMP-CP: cell imaging benchmark

B ViT-S/i8wHCS [l ChannelViT-S/8 w HCS
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Number of channels used for evaluation

ChannelViT consistently and significantly outperforms ViT across all evaluation settings.
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Training on datasets with different channels

= ViT-S/16 = ChannelViT-S/16

® 8 Channel Data ® 5 Channel Data .
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ChannelViT effectively integrates datasets with different channel configurations.

Percentages of 8-channel JUMP-CP data. The remaining data
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ChannelViT offers extra interpretability
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Visualizing perturbed-gene specific channel attribution

AGP DNA ER Mito RNA BF-1 BF-2 BF-3

ChannelViT focuses on different input
channels depending on the gene that has
been perturbed in the cell.

This enables us to understand the
underlying biological relationship between
different genes.

L ]
Fluorescence channels  Brightfield channels
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Conclusion

Channel Vision Transformers: An Image is Worth 1 x 16 x 16 Words

Yujia Bao*, Srinivasan Sivanandan®, Theofanis Karaletsos

Paper: arxiv.org/abs/2309.16108
Code + Pretrained Model Weights: https://github.com/insitro/ChannelViT

° cross-chappel and .
( Tansiormer Encoder cross-positional reasoning;
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7 z applications and standard
Input image ChannelViT creates patch tokens - imaging benChmarkS;
(S'Cha"nel) for each individual channel.
e extra interpretability to the

models’ decisions.
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