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Introduction: Motivation

Facts about Stochastic Heavy Ball (SHB) Method:

In practice, SHB is widely adopted to provide acceleration.

In theory, few results show SHB can provide acceleration.

SHB cannot provide acceleration unless batch size is large or noise is
special [Jain,2018].
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Problem Setup

We focus on optimizing quadratic target function

min
w

f(w) , Eξ [f(w, ξ)] , where f(w, ξ) =
1

2
w>H(ξ)w − b(ξ)>w,

We denote H = Eξ [H(ξ)] and κ = λmax(H)/λmin(H).

Left: Loss surface of a typical quadratic objective; Right: Loss surface of a
skewed quadratic objective when κ is large.
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Problem Setup

We denote the gradient noise to be

nt , ∇f(wt)−∇wf(wt, ξ)

and make the following assumptions:

1 Independent gradient noise: {nt} are pairwise independent.

2 Unbiased gradient noise: E [nt] = 0.

3 Anisotropic gradient noise: E
[
ntn

>
t

]
� σ2H.
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Main Result

Acceleration of SHB is attainable while still achieving near-optimal
convergence rates.

Corollary (main result)

Given a quadratic objective f(w) and a step decay learning rate scheduler
and momentum defined in the Theorem, with T ≥ Ω̃ (

√
κ), the output of

the algorithm satisfies

E [f(wT )− f(w∗)] ≤E [f(w0) + f(w1)− 2f(w∗)] · exp

(
−Ω̃

(
T√
κ

))
+ Õ

(
dσ2

MT

)
,

where we use Õ(·) and Ω̃(·) to hide the log factors.
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Proof Sketch

We can divide our proof into 3 main parts as follow:

1 Bias-Variance Decomposition

2 Dealing with Matrix Products

3 Applying to Convergence Analysis

Accelerated SHB Method 6 / 18



Bias-Variance Decomposition

E [f(wT )]− f(w∗) = BT + VT , where

BT
4
=

d∑
j=1

λj ‖TT−1,jTT−2,j ...T1,j‖2 E

∥∥∥∥∥
(

Π>V>
[
w1 − w∗
w0 − w∗

])
2j−1:2j

∥∥∥∥∥
2

,

VT
4
= σ2

d∑
j=1

λ2j

T−1∑
τ=1

η2τ ‖TT−1,jTT−2,j ...Tτ+1,j‖2 .

Here the momentum matrix is defined as

Tt,j
4
=

[
1 + β − ηtλj −β

1 0

]
,

where λj is the j-th eigenvalue of H.
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One Possible Approach

Lemma (bounding matrix power)

Given momentum matrices Tt,j , for all positive integers k, it holds that

∥∥∥Tk
t,j

∥∥∥
F
≤ min

(
8k,

8√
|(1 + β − ηtλj)2 − 4β|

)
ρ(Tt,j)

k.

However, in this way there will be additional κ every stage, which makes
the bound not tight and even causes loss explode.
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Loss Explosion
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Novel Technique

The key is utilizing the fact that every Tt,j does not differ too much.

Lemma (from matrix power to matrix product)

Given matrices Tt,j and ∆i, ∆ defined as

Tt,j =

[
1 + β − ηtλj −β

1 0

]
, ∆i =

[
δi 0
0 0

]
, ∆ =

[
δ 0
0 0

]
,

where δi ≥ 0, δ = max1≤i≤k δi, if (1 + β − ηtλj)2 − 4β ≥ 0, it holds that

‖(Tt,j + ∆1)(Tt,j + ∆2)...(Tt,j + ∆k)‖F ≤
∥∥∥(Tt,j + ∆)k

∥∥∥
F
.
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Novel Technique
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From Matrix Power to Matrix Product

Proof: discuss in two kinds of product of T and ∆

(Tt,j + ∆1)(Tt,j + ∆2)...(Tt,j + ∆n)

⇒ Tk1
t,j∆1 . . .T

k2
t,j . . .∆ . . .

or ∆ . . .Tk1
t,j∆ . . .Tk2

t,j . . .

⇒ Tk1
t,j∆ =

γk+1
1 −γk+1

2
γ1−γ2 δ 0
γk1−γk2
γ1−γ2 δ 0

 , ∆Tk1
t,j =

[
γk+1
1 −γk+1

2
γ1−γ2 δ −β γ

k
1−γk2
γ1−γ2 δ

0 0

]

Two key properties:

The left column is nonnegative, the right column is nonpositive.

Absolute value of each element is a monotonically increasing function
of δ.
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Key Result

Lemma (bounding matrix product)

Given β ∈ [0, 1), Tt,j , if Tt,j only has real eigenvalues, which is equivalent
to that the discriminant of Tt,j satisfies that (1 + β − ηtλj)2 − 4β ≥ 0, it
holds that

‖Tt+1,jTt+2,j ...Tt+k,j‖ ≤min

(
8k,

8√
(1 + β − ηt+kλj)2 − 4β

)
ρ(Tt+k,j)

k.

Main application: loss will not worsen too much when step size is small.
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Convergence Analysis: Bias

‖TT−1,jTT−2,j ...T1,j‖2 ≤ ‖TT−1,jTT−2,j ...Tτ+1,j‖2 ·
∥∥∥(T′1,j)k1∥∥∥2

1 In the first stage: bias exponentially decays after Õ(
√
κ) iterations.

2 In the remaining stages, the bias won’t get much worse (at most κ
times of that after the first stage)

‖Tt+1,jTt+2,j ...Tt+k,j‖ ≤min

(
8k,

8√
(1 + β − ηt+kλj)2 − 4β

)
ρ(Tt+k,j)

k

≤ 8√
(1 + β − ηt+kλj)2 − 4β

≈
√
κ.
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Convergence Analysis: Variance

V = σ2
d∑
j=1

λ2j

T−1∑
τ=1

η2τ ‖TT−1,jTT−2,j ...Tτ+1,j‖2 = σ2
d∑
j=1

T−1∑
τ=1

Vτ,j .

ηtλj >
(
1−
√
β
)2

= 1/κ, allows geometric decay of variance, Tt,j

has complex eigenvalues.

ηtλj ∈ [h/(T
√
κ), 1/κ], allows geometric decay of variance, Tt,j has

real eigenvalues.

ηtλj < h/(T
√
κ), variance no longer decay, but will not worsen too

much due to small step sizes.

The balance point h is around poly(log(T
√
κ)).
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Main Result

Theorem (main result)

Given a quadratic objective f(w) and a step decay learning rate scheduler
with β = (1− 1/

√
κ)

2
, and n` ≡ T/k` with settings that

1 stepsize η′`: η
′
` = 1

L ·
1

C`−1

2 the stage length k`: k` = T
logc(T

√
κ)

3 The total iteration number T : T
ln(214T 8)·ln(26T 4)·logc(T 2)

≥ 2C
√
κ,

then such scheduler exists, and the output of the algorithm satisfies

E[f(wT )− f(w∗)] ≤E [f(w0) + f(w1)− 2f(w∗)]

· exp

(
14 ln 2 + 2 lnT + 2 lnκ− 2T√

κ logc (T
√
κ)

)
+

4096dσ2

MT
ln2
(
26T 4

)
· log2

c

(
T
√
κ
)
.
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Experiments: Ridge Regressions
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