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Introduction: Motivation

Facts about Stochastic Heavy Ball (SHB) Method:
@ In practice, SHB is widely adopted to provide acceleration.
@ In theory, few results show SHB can provide acceleration.

@ SHB cannot provide acceleration unless batch size is large or noise is
special [Jain,2018].
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Problem Setup

We focus on optimizing quadratic target function
. 1
min f(w) £ E¢ [f(w, )], where f(w,&) = cw H(¢)w —b(¢) w,

We denote H = E¢ [H(¢)] and £ = Apax(H) /Amin (H).

Left: Loss surface of a typical quadratic objective; Right: Loss surface of a
skewed quadratic objective when & is large.
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Problem Setup

We denote the gradient noise to be

n, = Vf(wi) = Vwf(w, §)
and make the following assumptions:

@ Independent gradient noise: {n;} are pairwise independent
@ Unbiased gradient noise: E [n;] = 0.

© Anisotropic gradient noise: E [ntnﬂ < o2H.
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Main Result

Acceleration of SHB is attainable while still achieving near-optimal
convergence rates.

Corollary (main result)

Given a quadratic objective f(w) and a step decay learning rate scheduler
and momentum defined in the Theorem, with T > Q) (\/k), the output of
the algorithm satisfies

E[f(wr) — f(w.)] <E[f(wo) + f(w1) - 2f(w.)] - exp (‘Q (%»
- [ do?
+0 <m> )

where we use O(-) and Q(-) to hide the log factors.
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© Proof Sketch
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Proof Sketch

We can divide our proof into 3 main parts as follow:

@ Bias-Variance Decomposition
@ Dealing with Matrix Products

© Applying to Convergence Analysis
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Bias-Variance Decomposition

E[f(wr)] — f(wi) = Br + Vr, where
2

d
A
Br = Z Aj ||TT71,jTT72,j--'T1,j||2E

= Wo = Wx] /9, _1.95
d

T-1
AN
Ve =02y Ny I Tro1 s Trsny )
=1 =1

)

Here the momentum matrix is defined as

AL+ B =N B
Tt,]_|: 1 0 )

where ); is the j-th eigenvalue of H.
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One Possible Approach

Lemma (bounding matrix power)

Given momentum matrices T ;, for all positive integers k, it holds that

| Tk]|, < min (Sk, VT —817Mj)2 - 4ﬁ\> p(Ts5)".

However, in this way there will be additional x every stage, which makes
the bound not tight and even causes loss explode.
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Loss Explosion
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Novel Technique

The key is utilizing the fact that every T} ; does not differ too much.

Lemma (from matrix power to matrix product)

Given matrices Ty ; and A;, A defined as

_ |1+ B=mA B [ 0 [s0
Tm_[ 1 O’A’_OO’A_OO’

where 6; > 0, 6 = maxj<;<k 6;, if (1 + 8 —n:\j)2 — 48 > 0, it holds that

[(Teg + A1)(Teg + Ao)(Toy + Ap)lp < [[(Teg + &)Y
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Novel Technique
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From Matrix Power to Matrix Product

Proof: discuss in two kinds of product of T and A
(Tyj + A1)(Tej + Ag)...(Tyj + Ayp)
= TPAL. T2 AL
k k
or A...Tt’le...th....

B+1_ k+1 & &
k L2 5 0 & ot -3 W= 5
= T/ A= n=z , AT. = =72 =72
J N 0 o 0 0
Y1—72

Two key properties:
@ The left column is nonnegative, the right column is nonpositive.

@ Absolute value of each element is a monotonically increasing function
of 6.
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Key Result

Lemma (bounding matrix product)

Given € [0,1), Ty ;, if Ty ; only has real eigenvalues, which is equivalent

to that the discriminant of Ty ; satisfies that (1+ 8 —m:)\;)? — 48 >0, it
holds that

8
Tii1.iTeyo . Typp || <min | 8k, Tork;)*.
ITe41,iTer2,50 - Trprsll < ( VA B = nerh)? — 4ﬁ> P(Titk,5)

Main application: loss will not worsen too much when step size is small.
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Convergence Analysis: Bias

k 2
ITr—1;Tr—o;... Tijll> < |Tro1,;Tr—o... Trar il - H(Ti,j) '

@ In the first stage: bias exponentially decays after O(y/k) iterations.

@ In the remaining stages, the bias won't get much worse (at most &
times of that after the first stage)

8
VI + B = mgrA;)? — 48

8
S\/(1+5—Tlt+k)\j)2 15 Ve

[Ti41,Tev2,5-- Tk s <min <8k7 > P(Tipnj)*
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Convergence Analysis: Variance

d T-1 d T-1

2 § : 2 2 : 2 2 2 § :
V=0 )‘j n- HTT—I,jTT—2,j---TT+1,j|| =0 VT,j'

j=1 7=1 j=l7=1

o MAj > (1 — ﬂ)2 = 1/k, allows geometric decay of variance, T ;
has complex eigenvalues.

e n:\; € [h/(T/k),1/k], allows geometric decay of variance, T ; has
real eigenvalues.

e n:Aj < h/(T+/k), variance no longer decay, but will not worsen too
much due to small step sizes.

The balance point h is around poly(log(7'v/k)).
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Main Result

Theorem (main result)

Given a quadratic objective f(w) and a step decay learning rate scheduler
with 8 = (1 — 1/\/r)?, and ng = T/k, with settings that

- /.o 1 1
Q stepsize ny: my = 1 - o1

@ the stage length ky: ky = bg(%

© The total iteration number T': 1n(214T8)~1n(2TGT4)~logc(T2) > 2C/k,
then such scheduler exists, and the output of the algorithm satisfies

E[f(wr) — f(w.)] <E[f(wo) + f(w1) — 2f(w.)]

2T
cexp (14In2+4+2InT 4+ 2Ink — )
( Vrlog, (T'V/k)
4096do?

UT In? (26T4) : logz (T\/E) .

v
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Outline

© Experimental Results
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Experiments: Ridge Regressions

Table 1: Training loss statistics of ridge regression in a4 a dataset over 5 runs.

Methods/Schedules (f(w) — f(w.)) x 1072
Batchsize M =512 M =128 M =32 M=8
SGD + constant 7; 2.1040.46 1.174£0.81 1.274£027 0.944+0.83
SGD + step decay 2.4440.45 0.64+0.04 0.11+0.01  0.044-0.04
SHB + constant 7 0.86+0.55 0.55+0.26 1.03+£0.35 0.974+0.58
SHB + step decay 0.13+0.03 0.01+0.00 0.03+0.02 0.06+0.05
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