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Virtual sensing
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« Spatio-temporal data are a collection of time series coming from distinct spatial locations.

« Virtual sensing models allow for inferring signals at unmonitored locations by exploiting
neighbouring spatio-temporal measurements.

« Applications: reduce physical sensors or recover faults.



Sparse setting

Our focus: settings with sparse sensor coverage.
« Common due to cost or other (e.g. ecological) concerns.
But challenging:

« Limited information from neighbours.

« Intractable if no additional information is available at the target location.



Multivariate virtual sensing

We study multivariate settings where other
variables (covariates) provide partial
observability at the target location.




Methodology
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« T—Y: Relations between and the target.

« C—Y: Relations between observed covariate channels at the target location and the target.

We model both types of relations as edges in a nested graph.



Nested graph representation

Observed channel Missing channel

Intra-location
graph

| E— a—aD d=1 [ ({C——D ) Tl T~ L e Inter-location
n=1 n=3 T d=2 graph
- | e— —D d=3 Time
| e— — D d=4
a— | E— ——
n=2 | e— n=4 | e—
=2 ——> — S
ar— — —
Time
——— O

« Associate each location to a node of a graph G, (inter-location) modelling T—Y relations.
« Associate each channel to a node of a graph ¢, (intra-location) modelling C—Y relations.

« Both adjacency matrices can be learned from datal



Graph-graph Network
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Encode inputs at all time time, locations and channels Decode representations to
stamps, use node embeddings utilizing convolutions over predictions at all time steps
for missing channels. time, inter-location and with D different MLPs.
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Some empirical results

We perform extensive empirical evaluation:

« Explore different use cases.

» Demonstrate superior performance w.r.t. graph-based and time series imputation methods.

Climatic variables (MRE)

CH. TEMP. TEMP. WIND REL. CLouDs IRR.

MEAN RANGE SPEED HUM. SHORT

(D) (H)

AVG ) AVG

BRITS |4.010.6 17.542.3 32.1x1.5 5.540.8 29.910.9 20.941.0/20.510.5|26.310.8
GRIN,,, 2.910_9 12~9i1.3 30-7i3.9 3.6i0_9 MiD.Q Mio.s 16.5io_5 22.710_4
SAITS |2.4,04 11.2,, 5 26.9,, ¢ 3341 206407 14.240.9(15.5,45(22.2,0 5
GGNET [2.1+0.4 9.6+0.7 23.9422 2.7+0.7 16.5105 9.240.5 |13.410.2(20.410.6

%Imp. |12.5% 14.3% 11.1% 18.1% 19.9% 21.4%|13.5%‘ 8.1%

« and much more...!




Summary of contributions

« Tackle a new problem: virtual sensing in sparse settings.

Introduce a general methodology for performing multivariate virtual sensing.

« Propose a graph representation and an architecture allowing for modeling dependencies
within multivariate spatio-temporal data with general level of sparsity.

« Carry out an extensive empirical evaluation.
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