

STRUCT @PKU

Spatial and Temporal Restoration, Understanding and Compression

Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution

Yiyang Ma¹, Huan Yang², Wenhan Yang³, Jianlong Fu², Jiaying Liu¹ ¹Wangxuan Institute of Computer Technology, Peking University ²Microsoft Research ³Pengcheng Laboratory

Introduction

- Problem:
 - There are two characteristics of diffusion-based SR models:
 - Sampling instability due to the randomness of diffusion models;
 - Unique ground truths of the task of image SR.
 - They lead to the problem:
 - The quality of each sample cannot be guaranteed.

- **Existing Works:** Current methods does not manage to solve the problem.
- **Our Method:** Analysis on the Approximately Optimal BC of Diffusion ODEs Obtaining the $\tilde{\mathbf{x}}_T$ with a refence set of image pairs. Applying the $\tilde{\mathbf{x}}_T$ to all the LRs, achieving better results stably.

Boost All the Diffusion-based SR Models

Preliminary: Diffusion ODE sampler The results are determined by the boundary condition \mathbf{x}_T (*i.e.*, the Gaussian noise at the start of the sampling process). e.g., DDIM (ICLR 21'), DPM-Solver (NIPS 22'). Thus, the SR images can be a function of BC and LR image:

 $\mathbf{X}_{\mathbf{0}}$

$$h_{\theta}(\mathbf{x}_T, \mathbf{y})$$

Optimal Boundary Condition The BC that can generate the SR image which is the most close to the HR image:

$$\mathbf{x}_0^* = h_{ heta}(\mathbf{x}_T^*, \mathbf{y})$$
, where $\mathbf{x}_0^* = rg\max_{\mathbf{x}_0} p_{ heta}(\mathbf{x}_0 | \mathbf{y})$

$$\mathbf{x}_T^* = \underset{\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\operatorname{arg\,max}} p_{\theta}(h_{\theta}(\mathbf{x}_T, \mathbf{y}))$$

We prove that the \mathbf{x}_{T}^{*} is approximately consistent to different LRs:

 $\approx \arg \max p_{\theta}(h_{\theta}(\mathbf{x}_T, \mathbf{y}_i)), \forall \mathbf{y}_i \in \mathcal{C}$ $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Find an Approximately Optimal BC

approximated implementation of the likelihood.

We build a reference set and calculate the $\tilde{\mathbf{x}}_T$ on it:

$$\tilde{\mathbf{x}}_T \approx \operatorname*{arg\,min}_{\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \sum_{i=1}^R M(h_\theta(\mathbf{x}_T, \mathbf{y}_i), \mathbf{z}_i)$$

We employ a perceptual distance between SR and HR as an



- Apply the $\tilde{\mathbf{x}}_T$ to Different LRs
- sampling process of different LRs:
 - $\tilde{\mathbf{x}}_0 =$
- achieving stable and better SR performances.
- be employed in all the diffusion-based SR models.

As we have declared before, the $\tilde{\mathbf{x}}_T$ can be directly applied in the

$$h_{\theta}(\tilde{\mathbf{x}}_T, \mathbf{y})$$

The method does not limited the SR model itself, which means it can

Quantitative Comparisons

models and two degradation settings. The comparison of bicubic-SR on SR3 is shown below:

Mada	Model (& sampling method)		DIV2k-test		Urban100		BSD100	
woder (& sampling method)		$ $ LPIPS \downarrow	$PSNR\uparrow$	\downarrow LPIPS \downarrow	$PSNR\uparrow$	LPIPS \downarrow	$PSNR\uparrow$	
ESRGAN		0.1082	28.18	0.1226	23.04	0.1579	23.65	
RankSRGAN		0.1171	27.98	0.1403	23.16	0.1714	23.80	
SRDiff		0.1286	28.96	0.1391	23.88	0.2046	24.17	
	DDPM-1000	0.1075	28.75	0.1165	24.33	0.1555	23.86	
	DDPM-250	0.1142	28.95	0.1181	24.41	0.1621	24.00	
	DDPM-100	0.1257	29.16	0.1232	24.51	0.1703	24.15	
	DPMS-20	0.1653	27.25	0.1413	23.46	0.2037	22.79	
SR3	DDIM-50	0.1483	28.55	0.1333	24.16	0.1823	23.75	
	DDIM-100	0.1571	28.16	0.1335	24.05	0.1950	23.55	
	DPMS-20 + $\tilde{\mathbf{x}}_T$	0.1210	27.45	0.1179	23.57	0.1687	22.81	
	DDIM-50 + $\tilde{\mathbf{x}}_T$	0.1053	28.65	0.1164	24.26	0.1552	23.99	
	DDIM-100 + $\tilde{\mathbf{x}}_T$	0.1032	28.48	0.1136	24.12	0.1505	23.67	

We implement our method on three different diffusion-based SR

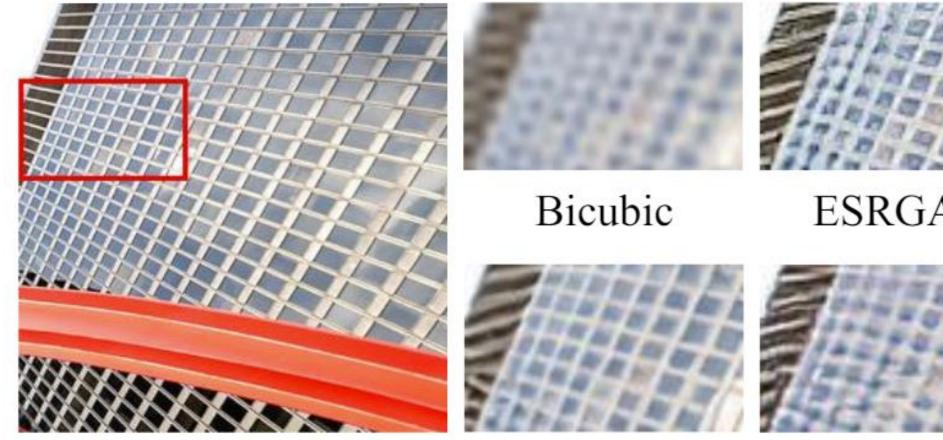
Experiments

Quantitative Comparisons

models and two degradation settings.

below:

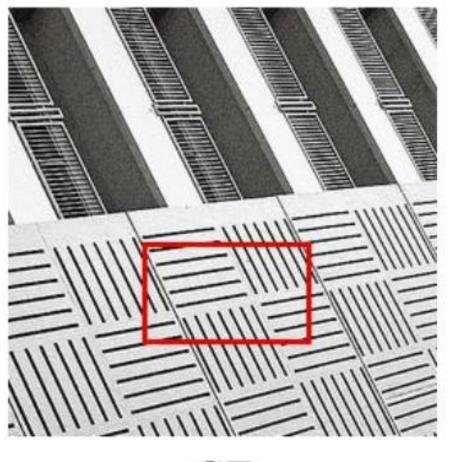
Model (& sampling method)		DIV2k-test			RealSR		
		DISTS \downarrow	LPIPS \downarrow	$PSNR\uparrow$	DISTS \downarrow	LPIPS \downarrow	$PSNR \uparrow$
RealSR		0.3051	0.5148	22.52	0.2532	0.3673	26.30
BSRGAN		0.2253	0.3416	22.13	0.2057	0.2582	25.52
DASR		0.2340	0.3444	22.02	0.2113	0.3014	26.32
Real-ESRGAN		0.2108	0.3109	22.36	0.2020	0.2511	25.12
KDSR-GAN		0.2022	0.2840	22.92	0.2006	0.2425	26.09
StableSR	DDPM-200	0.2010	0.3189	19.42	0.2210	0.3065	21.37
	DDIM-50	0.2217	0.3629	18.82	0.2336	0.3536	21.24
	DDIM-50 + $\tilde{\mathbf{x}}_T$	0.2046	0.3169	19.55	0.2164	0.2999	22.13
DiffIR	D-4	0.1773	0.2360	22.94	0.2076	0.2604	25.33
	$D-4 + \tilde{x}_T$	0.1772	0.2357	22.95	0.1993	0.2419	25.82


We implement our method on three different diffusion-based SR

The comparison of real world-SR on StableSR and DiffIR is shown

Experiments

Qualitative Comparisons We also show several visual cases:

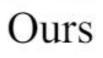

GT

SRDiff

RSRGAN

Bicubic

SRDiff


ESRGAN

RSRGAN

DDPM-250

DDPM-100

Ours

10

- We analyze the characteristics of BCs.
- We propose a method of approximating an optimal BC.
- - without any external training.

The method can be utilized in different diffusion-based SR models

11

STRUCT @PKU

Spatial and Temporal Restoration, Understanding and Compression

Presenter: Yiyang Ma myy12769@pku.edu.cn

