

# CONTINUAL MOMENTUM FILTERING ON PARAMETER SPACE FOR ONLINE TESTTIME ADAPTATION

Jae-Hong Lee ·
Joon-Hyuk Chang
Hanyang University



# Introduction



## Unsupervised online domain adaptation

- Online test-time adaptation (OTTA)
  - Challenges of OTTA
    - Unsupervised domain adaptation → Models are trained in an unsupervised manner, thus cannot utilize ground truth labels during training.
    - Source-free → Does not allow access to source data, only permits the use of the source model.
    - Online learning → Allows only a one-time access to target domain samples.
    - By resolving such challenging issues, it is possible to perform interaction adaptation.
  - Various scenarios of OTTA
    - covariate shifts (CS),
    - temporally-correlated covariate shifts (TC-CS),
    - temporally-correlated label shifts (TC-LS) over CS
    - TC-CS over TC-CS
  - Applications → self-driving, speech recognition, personalization, smart factory, etc.

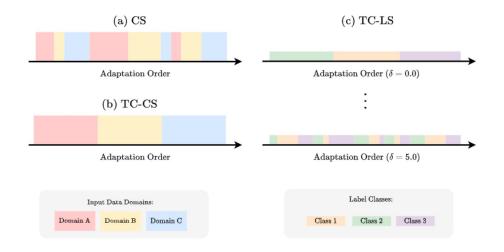


Figure. Various scenarios of OTTA

# Introduction



#### Problem

- Non-independent and identically distributed samples
  - DNN models rely on the i.i.d assumption.
  - The i.i.d assumption is difficult to maintain in stream data for domain adaptation.
    - o (non-independent) Data obtained from nature are temporally correlated.
    - (non-identical) Shifts occur between the source and target distributions.
  - If the assumption is not met, the performance of DNNs drops significantly.

#### Error propagation from catastrophic forgetting

- Catastrophic forgetting
  - When distribution shifts occur, the performance of the source model decreases.
  - In non-independent sampling situations, specific biases are introduced to the model (e.g., mode collapse), and catastrophic forgetting occurs.
- Error propagation
  - If self-training is conducted using unreliable model outputs, error propagation is accelerated and catastrophic forgetting occurs.
- Catastrophic forgetting and error propagation form a negative feedback loop.

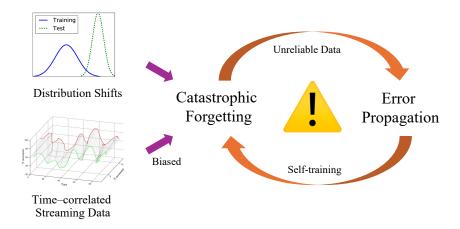


Figure. Accelerated catastrophic forgetting

# Background



## Source model dependency

#### Introduction

- Using noisy predictions as labels to train, the parameters of the target model become noisy due to error propagation.
  - Method of training only a subset of source model parameters.
  - Constraining the target model with fixed information or parameters from the source model
  - → By regularizing to prevent the target model from diverging too far from the source model, catastrophic forgetting is prevented.
- Existing methods limit the flexibility of the target model because they continuously use the information from the frozen source model.
  - It is difficult to adapt to distribution shifts in the target domain.

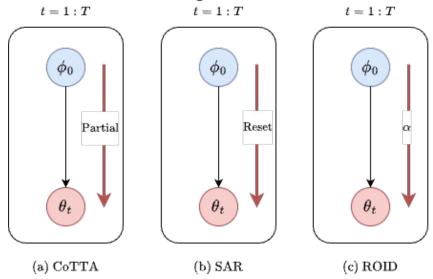


Figure. Graphical model of exist OTTA methods



## Continual momentum filtering on parameter space for online test-time adaptation

#### Motivation

- Use a hidden model instead of freezing the source model
  - The hidden model updates with target model parameters
  - Increased risk of error propagation due to noisy target model
- Adopt Kalman filtering with noise reduction capabilities, applied in the parameter space
  - Kalman filtering models the intrinsic noise of observations
  - Observations are set as target model parameters
  - Kalman filtering suppresses noisy observations, which are then stored in the hidden model
- Overall Framework
  - Optimization process based on Stochastic Gradient Descent (SGD)
  - Inference process based on Kalman filtering
  - Alternating between the two processes, performing the OTTA procedure

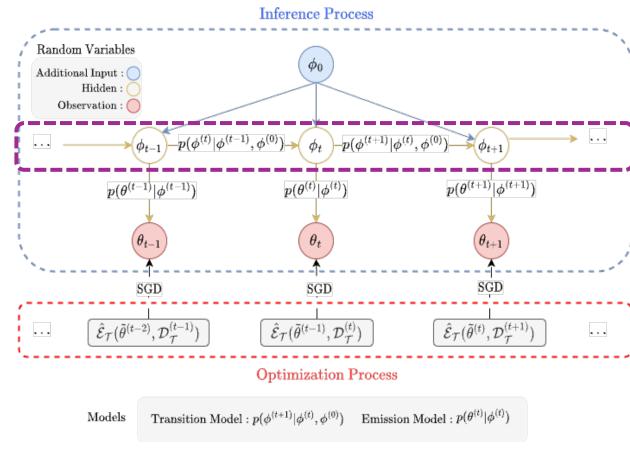


Figure. Graphical model of continual momentum filtering (CMF)



## Continual momentum filtering on parameter space for online test-time adaptation

#### Optimization process

Optimization process (generic)

$$\hat{\mathcal{E}}_{\mathcal{T}}(\Theta^{(0)}, \mathcal{D}_{\mathcal{T}}^{(t)}) = \frac{1}{N_{\mathcal{T}}} \sum_{\mathbf{x}_n \in \mathcal{D}_{\mathcal{T}}^{(t)}} \ell(f(\mathbf{x}_n; \Theta^{(0)})).$$

$$\Theta^{(t+1)} = rg \min_{\Theta^{(t)}} \hat{\mathcal{E}}_{\mathcal{T}}(\Theta^{(t)}, \mathcal{D}_{\mathcal{T}}^{(t+1)}) + \lambda d(\Theta^{(0)}, \Theta^{(t)})$$

Optimization process (in CMF)

$$heta^{(t+1)} = rg \min_{ ilde{ heta}^{(t)}} \hat{\mathcal{E}}_{\mathcal{T}}(\widehat{ heta}^{(t)}, \mathcal{D}_{\mathcal{T}}^{(t+1)}).$$

- Remove the regularization term composed of source parameters.
- o The refined parameter  $\hat{\theta}^{(t)}$  calculated by CMF is used for regularization of the hidden model parameters.

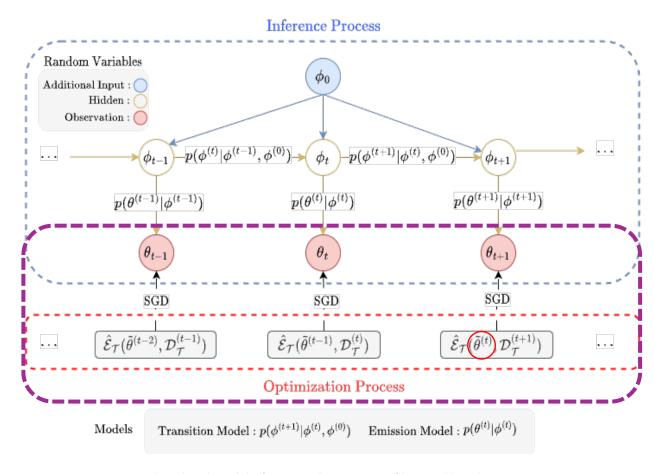


Figure. Graphical model of continual momentum filtering (CMF)



## Continual momentum filtering on parameter space for online test-time adaptation

#### Parameterization

Transition model

$$p(\phi^{(t)}|\phi^{(t-1)},\phi^{(0)}) = \mathcal{N}(\phi^{(t)}|A\phi^{(t-1)} + (1-A)\phi^{(0)},Q),$$

- Design the transition model using the source parameter as an auxiliary variable.
- The role is to recover the hidden parameter that can be distorted when updated with target parameters.
- Emission model

$$p(\theta^{(t)}|\phi^{(t)}) = \mathcal{N}(\theta^{(t)}|H\phi^{(t)},R),$$

 Assume that there will be little change in observations since it targets a well-pretrained source model.

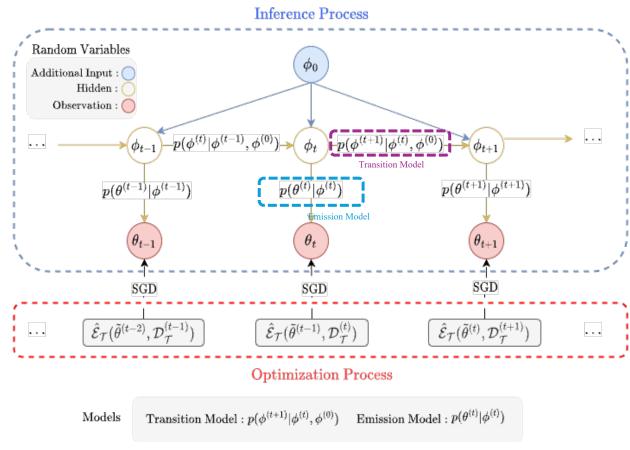


Figure. Graphical model of continual momentum filtering (CMF)



#### Continual momentum filtering on parameter space for online test-time adaptation

#### Interence process

Predict step

$$\begin{aligned} p(\phi^{(t)}|\theta^{(1:t-1)},\phi^{(0)}) &= \mathcal{N}(\phi^{(t)}|\mu_{t|t-1},\Sigma_{t|t-1}) \\ \mu_{t|t-1} &= \mathbf{A}\mu_{t-1|t-1} + (1-\mathbf{A})\phi^{(0)}, \\ \Sigma_{t|t-1} &= \mathbf{A}\Sigma_{t-1|t-1}\mathbf{A}^{\top} + Q. \end{aligned}$$

Update step

$$p(\phi^{(t)}|\theta^{(1:t)},\phi^{(0)}) = \mathcal{N}(\phi^{(t)}|\mu_{t|t},\Sigma_{t|t}),$$

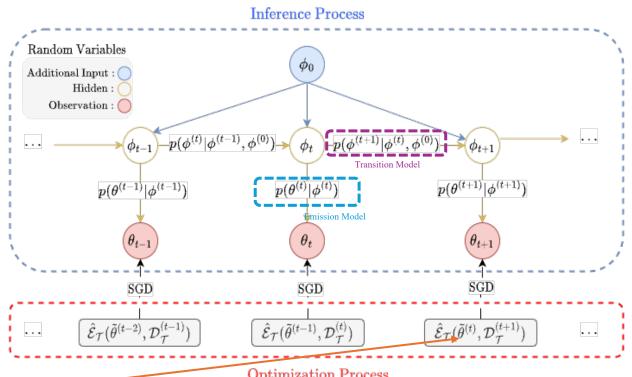
$$K_{t} = \Sigma_{t|t-1}H^{\top}(H\Sigma_{t|t-1}H^{\top}+R)^{-1},$$

$$\mu_{t|t} = \mu_{t|t-1} + K_{t}(\theta^{(t)} - H\mu_{t|t-1}),$$

$$\Sigma_{t|t} = \Sigma_{t|t-1} - K_{t}H\Sigma_{t|t-1}.$$

Transfer step

$$\widetilde{\theta^{(t)}} = \Gamma \theta^{(t)} + (1 - \Gamma) \mu_{t|t},$$



**Optimization Process** 

Transition Model:  $p(\phi^{(t+1)}|\phi^{(t)},\phi^{(0)})$ Models Emission Model :  $p(\theta^{(t)}|\phi^{(t)})$ 

Figure. Graphical model of continual momentum filtering (CMF)



### Continual momentum filtering on parameter space for online test-time adaptation

#### Stable Implementation

- The value of the parameter dimension of DNNs is generally large, which requires high compute cost for Kalman filtering.
- Simplify the Kalman filtering parameter to a scalar.

$$(A, Q, H, R, \Gamma) \xrightarrow{\text{Scalarization}} (\alpha, q, \eta, r, \gamma)$$

• In the simplified setting, CMF is simplified as follows:

$$egin{aligned} \mu_{t|t-1} &= \operatorname{Moments}(\mu_{t-1|t-1},\phi^{(0)},lpha), \ \mu_{t|t} &= \operatorname{Moments}(\mu_{t|t-1}, heta^{(t)},eta_t), \ & ilde{ heta}^{(t)} &= \operatorname{Moments}( heta^{(t)},\mu_{t|t},\gamma), \ \operatorname{Moments}(x_1,x_2,a) &= ax_1 + (1-a)x_2, \end{aligned}$$

$$\Sigma_{t|t-1} = \alpha^2 \Sigma_{t-1|t-1} + q,$$
  
$$\beta_t = r/(\Sigma_{t|t-1} + r),$$
  
$$\Sigma_{t|t} = \beta_t \Sigma_{t|t-1}.$$

#### **Algorithm 1** Continual Momentum Filtering INPUT: Input data stream $\{\mathcal{D}_{\mathcal{T}}^{(1)}\dots\mathcal{D}_{\mathcal{T}}^{(T)}\}\$ , Source model $f(.;\theta^0)$ , Number of updates I, Hyperparameter $(\alpha, q, r, \gamma)$ , Initialization $\tilde{\theta}^{(0)} \leftarrow \theta^{(0)}$ , $\mu_{0|0} \leftarrow \theta^{(0)}$ , $\Sigma_{0|0} \leftarrow 0$ for $t = 1, \ldots, T$ do for $i = 1, \ldots, I$ do **OPTIMIZATION PROCESS:** $\theta^{(t)} = \arg\min_{\tilde{\theta}^{(t-1)}} \hat{\mathcal{E}}_{\mathcal{T}}(\tilde{\theta}^{(t-1)}, \mathcal{D}_{\mathcal{T}}^{(t)})$ ⊳ Eq. (4) **INFERENCE PROCESS:** // Predict Step: $\mu_{t|t-1} = \text{Moments}(\mu_{t-1|t-1}, \phi^{(0)}, \alpha)$ ⊳ Eq. (15) $\Sigma_{t|t-1} = \alpha^2 \Sigma_{t-1|t-1} + q$ ⊳ Eq. (18) // Update Step: $\beta_t = r/(\Sigma_{t|t-1} + r)$ ⊳ Eq. (19) $\mu_{t|t} = \text{Moments}(\mu_{t|t-1}, \theta^{(t)}, \beta_t)$ ⊳ Eq. (16) $\Sigma_{t|t} = \beta_t \Sigma_{t|t-1}$ ⊳ Eq. (20) // Parameter Ensemble: $\theta^{(t)} = \text{Moments}(\theta^{(t)}, \mu_{t|t}, \gamma)$ ⊳ Eq. (17) end for end for



## Continual momentum filtering on parameter space for online test-time adaptation

- Experimental Settings (Image)
  - Dataset
    - Source data
      - → ImageNet-1K
    - Target Data
      - → ImageNet-C
      - → ImageNet-D109 (D109)
      - → ImageNet-R (Rendition)
      - → ImageNet-Sketch (Sketch)
  - Models
    - VisionTransformer (ViT), SwinTransformer (Swin), data2vec-vision (D2V)
  - Comparison Methods
    - o TENT, CoTTA, RoTTA, SAR, EATA, ROID
  - Performance Metric
    - 4 random seeds
    - Average error rates (%)

- Experimental Settings (Speech)
  - Dataset
    - Source data
      - → LibriSpeech (LS)
      - → LbriVox (Vox)
    - Target Data
      - → TED-LIUM v3 (TED)
      - → Common Voice (CV)
  - Models
    - data2vec base (D2V-Libri), data2vec large (D2V-Vox)
  - Comparison Methods
    - SUTA (continual, episodic)
  - Performance Metric
    - 4 random seeds
    - Viterbi Decoding
    - Word Error Rate (WER) (%)

[8] Lee, Jae-Hong, and Joon-Hyuk Chang. "Continual Momentum Filtering on Parameter Space for Online Test-time Adaptation." The Twelfth International Conference on Learning Representations. 2023.



## Continual momentum filtering on parameter space for online test-time adaptation

#### Experimental Results

- TENT experiences performance degradation compared to the source model in both ImageNet-C and D109 datasets, SAR in D109, and EATA in ImageNet-C.
- RoTTA, CoTTA, and ROID show relatively robust performance, with ROID having the highest performance among them.
- CMF achieves the lowest mean error rates among the existing methods, consistently showing performance improvements across all models.

|            |           | Image     | eNet-C    |                 | D109      |           |           |           |  |
|------------|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|--|
| Method     | ResNet-50 | ViT       | Swin      | D2V             | ResNet-50 | ViT       | Swin      | D2V       |  |
| Source     | 82.0      | 60.2      | 64.0      | 51.8            | 58.8      | 53.6      | 51.4      | 48.0      |  |
| TENT       | 85.7±0.95 | 55.1±0.08 | 62.6±0.18 | 50.5±0.06       | 55.4±0.08 | 76.8±0.36 | 61.5±0.41 | 57.9±0.42 |  |
| CoTTA      | 82.0±0.08 | 59.6±0.02 | 63.9±0.01 | 51.2±0.02       | 55.3±0.04 | 53.3±0.04 | 51.2±0.03 | 47.8±0.01 |  |
| RoTTA      | 79.5±0.10 | 58.7±0.04 | 62.9±0.03 | 51.3±0.03       | 54.8±0.04 | 50.9±0.05 | 48.6±0.05 | 46.8±0.03 |  |
| SAR        | 79.6±0.68 | 52.3±0.12 | 60.5±1.04 | 50.7±0.07       | 53.6±0.07 | 61.2±0.36 | 53.9±0.08 | 48.1±0.08 |  |
| EATA       | 72.5±1.44 | 51.8±0.14 | 56.2±0.29 | 76.2±20.23      | 53.1±0.09 | 48.5±0.11 | 48.8±0.12 | 46.2±0.05 |  |
| ROID       | 69.5±0.13 | 50.7±0.08 | 55.0±0.26 | $47.4 \pm 0.08$ | 50.9±0.04 | 46.9±0.02 | 47.2±0.07 | 45.0±0.01 |  |
| CMF (ours) | 67.6±0.20 | 49.0±0.10 | 52.1±0.12 | 45.7±0.03       | 49.4±0.21 | 44.5±0.08 | 44.8±0.04 | 42.8±0.05 |  |

Table. Average error rates (%) and their corresponding standard deviations in the scenario of CS. Red fonts indicate performance degradation.



## Continual momentum filtering on parameter space for online test-time adaptation

#### Experimental Results

- TENT suffers severe performance degradation in the CS scenario, and even CoTTA and RoTTA, which were robust, experience a decline.
- EATA shows robust performance except for the D2V model but does not match ROID.
- CMF achieves the lowest average error rates among existing methods in this scenario as well. CMF consistently demonstrates performance improvements across various datasets and models.

| Method     | ImageNet-C |           |            | D109      |           |           | Rendition |           |           | Sketch    |           |            |
|------------|------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|            | ViT        | Swin      | D2V        | ViT       | Swin      | D2V       | ViT       | Swin      | D2V       | ViT       | Swin      | D2V        |
| Source     | 60.2       | 64.0      | 51.8       | 53.6      | 51.4      | 48.0      | 56.0      | 54.2      | 46.6      | 70.6      | 68.4      | 60.4       |
| TENT       | 54.5±0.04  | 64.0±0.14 | 51.9±0.09  | 83.3±0.13 | 66.4±0.33 | 62.9±0.21 | 53.3±0.09 | 53.8±0.38 | 46.0±0.03 | 70.8±1.12 | 68.7±0.22 | 60.3±0.06  |
| CoTTA      | 60.4±0.02  | 64.2±0.01 | 51.7±0.02  | 53.3±0.03 | 51.2±0.01 | 47.8±0.02 | 55.6±0.03 | 54.1±0.02 | 46.4±0.01 | 70.6±0.01 | 68.3±0.02 | 60.3±0.01  |
| RoTTA      | 59.1±0.05  | 63.4±0.01 | 51.3±0.01  | 51.4±0.03 | 49.1±0.03 | 47.2±0.03 | 54.8±0.04 | 53.5±0.03 | 46.5±0.02 | 69.3±0.03 | 67.3±0.03 | 60.1±0.03  |
| SAR        | 51.7±0.14  | 65.9±1.27 | 51.0±0.12  | 57.3±0.41 | 53.5±1.05 | 48.5±0.10 | 48.5±0.21 | 53.7±2.78 | 45.9±0.05 | 70.5±1.21 | 73.4±1.31 | 60.2±0.07  |
| EATA       | 49.9±0.06  | 52.9±0.25 | 64.4±15.84 | 47.2±0.10 | 47.4±0.18 | 45.8±0.06 | 49.0±0.20 | 49.9±0.33 | 45.0±0.08 | 59.8±0.19 | 60.6±0.26 | 78.3±17.08 |
| ROID       | 45.0±0.09  | 47.0±0.26 | 44.8±0.01  | 45.0±0.04 | 45.1±0.10 | 44.2±0.06 | 44.2±0.13 | 46.0±0.10 | 41.8±0.11 | 58.6±0.04 | 58.9±0.11 | 56.2±0.05  |
| CMF (ours) | 44.8±0.12  | 46.6±0.12 | 43.5±0.04  | 43.4±0.07 | 43.6±0.12 | 42.3±0.11 | 42.7±0.20 | 44.1±0.24 | 40.0±0.06 | 57.0±0.08 | 56.7±0.13 | 53.9±0.03  |

Table. Average error rates (%) and their corresponding standard deviations in the scenario of TC-CS. Red fonts indicate performance degradation with respect to Source.



## Continual momentum filtering on parameter space for online test-time adaptation

#### Experimental Results

- Firstly, in the case of the highest degree of temporal correlation (i.e.,  $\delta$ =0.0), all methods except for LAME and ROID show unstable results.
- Among the two methods, ROID shows the highest performance in all models except for the Swin model in D109 → CMF shows lower error rates than both methods across all three models.
- As the temporal correlation decreases, LAME experiences a severe performance drop.

■ Meanwhile, SAR and EATA show relatively competitive performance but do not reach the level of ROID → CMF outperforms ROID in all

cases.

|          | ImageNet-C |           |            |            |           | D109       |           |           |           |           |            |
|----------|------------|-----------|------------|------------|-----------|------------|-----------|-----------|-----------|-----------|------------|
| $\delta$ | Model      | LAME      | SAR        | EATA       | ROID      | CMF (ours) | LAME      | SAR       | EATA      | ROID      | CMF (ours) |
| 0.0      | ViT        | 44.1±0.02 | 48.3±0.28  | 71.8±1.22  | 16.2±0.06 | 15.9±0.04  | 35.2±0.55 | 58.5±0.40 | 58.6±1.45 | 31.4±0.07 | 31.0±0.10  |
|          | Swin       | 47.1±0.09 | 60.1±0.74  | 72.7±0.67  | 18.1±0.03 | 16.7±0.10  | 30.1±0.16 | 55.4±0.17 | 54.2±0.99 | 30.3±0.25 | 29.6±0.21  |
|          | D2V        | 38.9±0.07 | 48.3±0.15  | 58.2±2.21  | 17.4±0.21 | 14.4±0.24  | 29.7±0.15 | 49.5±0.04 | 46.1±0.37 | 29.3±0.03 | 27.8±0.12  |
| 0.01     | ViT        | 83.2±0.23 | 48.7±0.29  | 47.7±0.12  | 36.3±0.08 | 35.0±0.04  | 44.8±0.69 | 58.6±0.80 | 50.7±1.20 | 32.2±0.10 | 31.8±0.10  |
|          | Swin       | 84.7±0.12 | 58.4±0.86  | 50.0±0.35  | 37.2±0.06 | 35.1±0.16  | 39.9±0.77 | 53.7±0.53 | 49.6±0.41 | 31.1±0.11 | 30.3±0.24  |
|          | D2V        | 79.5±0.20 | 47.9±0.05  | 65.0±18.58 | 35.9±0.08 | 32.7±0.04  | 39.9±0.56 | 49.1±0.14 | 47.1±1.08 | 30.7±0.09 | 28.6±0.11  |
| 0.1      | ViT        | 79.9±0.06 | 48.4±0.30  | 46.1±0.17  | 41.3±0.05 | 39.6±0.03  | 68.9±0.24 | 57.7±0.56 | 47.4±0.16 | 37.3±0.12 | 36.1±0.11  |
|          | Swin       | 84.5±0.09 | 58.4±0.75  | 48.3±0.09  | 42.1±0.04 | 39.6±0.02  | 64.6±0.25 | 53.4±0.70 | 47.4±0.21 | 36.9±0.11 | 35.0±0.05  |
|          | D2V        | 70.1±0.04 | 48.0±0.04  | 65.5±19.11 | 41.3±0.03 | 38.2±0.05  | 64.6±0.25 | 48.6±0.04 | 45.7±0.08 | 36.3±0.06 | 34.1±0.13  |
| 1.0      | ViT        | 80.0±0.03 | 48.3±0.25  | 45.7±0.15  | 41.2±0.03 | 39.4±0.03  | 90.0±0.09 | 57.4±0.12 | 47.2±0.04 | 42.9±0.03 | 41.3±0.06  |
|          | Swin       | 84.6±0.06 | 58.5±0.41  | 47.4±0.39  | 41.9±0.03 | 39.4±0.11  | 86.9±0.24 | 54.5±0.68 | 47.4±0.10 | 43.0±0.06 | 41.3±0.04  |
|          | D2V        | 70.2±0.07 | 47.9±0.09  | 87.0±18.44 | 41.2±0.01 | 38.1±0.03  | 88.3±0.13 | 48.5±0.09 | 45.7±0.04 | 42.2±0.04 | 40.1±0.10  |
| 5.0      | ViT        | 80.2±0.09 | 55.5±12.62 | 45.6±0.17  | 41.3±0.03 | 39.5±0.03  | 93.3±0.17 | 57.3±0.22 | 47.2±0.08 | 43.9±0.09 | 42.5±0.08  |
|          | Swin       | 84.9±0.04 | 59.2±0.68  | 47.6±0.25  | 41.9±0.03 | 39.4±0.08  | 90.6±0.23 | 54.0±0.72 | 47.3±0.05 | 44.1±0.06 | 42.5±0.07  |
|          | D2V        | 70.5±0.12 | 47.9±0.08  | 65.9±18.92 | 41.2±0.03 | 38.0±0.05  | 92.8±0.16 | 48.4±0.12 | 45.7±0.06 | 43.2±0.04 | 41.1±0.06  |

Table. Average error rates (%) and their corresponding standard deviations in the scenario of TC-LS over TC-CS.



## Continual momentum filtering on parameter space for online test-time adaptation

#### Experimental Results

- Complex distribution shifts
  - For ImageNet-C and D109, δ was experimented with at 0.01 and 0.1 respectively.
  - CMF shows the best performance across all datasets and models.

#### Real-world streaming

- Both TED and CV differ from the source domain LibriSpeech in terms of recording environment and the domain of words used.
- SUTA is an episodic method that performs test-time adaptation for a single utterance.
- When applied to a continual setting, there is a severe performance degradation.
- CMF prevents catastrophic forgetting of SUTA in continual settings and improves performance compared to episodic SUTA.

| Method     |           | ImageNet-C |            | D109      |           |           |  |
|------------|-----------|------------|------------|-----------|-----------|-----------|--|
|            | ViT       | Swin       | D2V        | ViT       | Swin      | D2V       |  |
| LAME       | 36.1±0.09 | 37.4±0.12  | 36.3±0.11  | 29.9±0.18 | 28.6±0.23 | 29.1±0.19 |  |
| SAR        | 54.1±0.40 | 65.4±0.53  | 47.2±0.08  | 61.0±0.51 | 53.6±0.24 | 48.6±0.35 |  |
| EATA       | 70.5±0.67 | 77.1±0.93  | 85.8±18.90 | 52.9±2.98 | 50.3±0.25 | 45.9±0.13 |  |
| ROID       | 23.6±0.05 | 28.6±0.16  | 18.8±0.01  | 29.1±0.09 | 28.2±0.05 | 26.3±0.07 |  |
| CMF (ours) | 23.2±0.05 | 27.1±0.08  | 17.1±0.09  | 28.7±0.19 | 27.3±0.05 | 24.9±0.10 |  |

Table. Average error rates (%) and their corresponding standard deviations in the scenario of TC-LS over CS.

|               | TI            | ED           | CV          |                 |  |  |
|---------------|---------------|--------------|-------------|-----------------|--|--|
| Method        | D2V-Libri     | D2V-VOX      | D2V-Libri   | D2V-VOX         |  |  |
| Source        | 12.2          | 8.5          | 33.4        | 20.6            |  |  |
| SUTA-cont.    | 67.7±1.70     | 66.1±0.36    | 120.89±4.03 | 130.3±1.88      |  |  |
| SUTA-episodic | $12.0\pm0.03$ | $8.0\pm0.03$ | 30.3±0.01   | $18.9 \pm 0.01$ |  |  |
| CMF (ours)    | 11.8±0.05     | 7.9±0.02     | 29.6±0.02   | 18.7±0.03       |  |  |

Table. Average WERs (%) and their corresponding standard deviations in real-world streaming scenario.

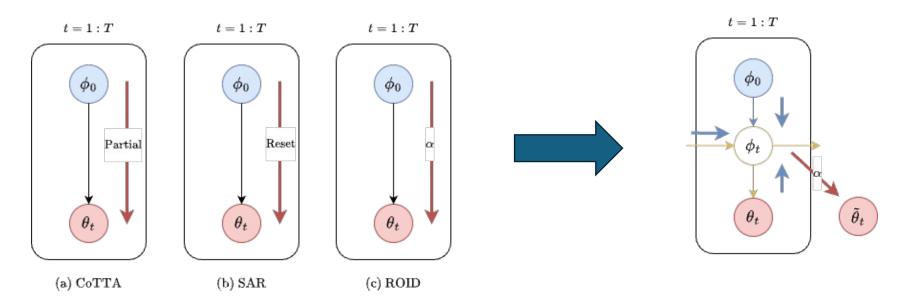
# Conclusion



## Continual momentum filtering on parameter space for online test-time adaptation

#### Conclusion

- We propose CMF, which utilizes the Kalman filter to denoise target models along with the source model, infers a new source model, and thereby refines the OTTA method.
- By simplifying the Kalman filter algorithm, we reduce computation and ensure the practicality of CMF.
- Our framework has been validated across various scenarios tested with existing OTTA methods and has shown significant performance improvements.
- It also yields valid results in the real-world streaming scenario of the speech recognition task.



[8] Lee, Jae-Hong, and Joon-Hyuk Chang. "Continual Momentum Filtering on Parameter Space for Online Test-time Adaptation." The Twelfth International Conference on Learning Representations. 2023.