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Sparse phase retrieval

@ The phase retrieval problem is to reconstruct an n-dimensional signal x% using its
magnitude-only measurements:

Yi = |<ai7wh>|27 1= 1727' s, Mm. (1)

{y;}™,: phaseless measurements; {a,}" : sensing vectors; x‘: target signal to be recovered.

1= 1=

@ The sparse phase retrieval problem can be expressed as
Find x, subjectto |(a;,x)* =y Vi=1,...,m, and |z, < s. (2)

@ Phase retrieval arises in many applications in scientific imaging, such as diffraction
imaging, astronomical imaging, X-ray crystallography, optics, etc.
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Overview of state-of-the-art algorithms

Methods Per-iteration computation Iteration complexity Loss function
ThWF [1] O(n?logn) O(log(1/¢)) f1(x)
SPARTA [2] O(ns?logn) O(log(1/¢)) fa(zx)
CoPRAM [3] O(ns*logn) O(log(1/€)) fa(z)
HTP [4] O((n+ s%)s?logn)  O(log(log(n*")) + log(||@* /2%,;,)) fa(z)
Proposed O((n + s?)s?logn) O(log(log(1/€)) + log(HwhH/mfmn)) fr(x), falx)

@ n: signal dimension; s: sparsity; z%,.: the smallest nonzero entry in magnitude of z'.

min *

@ Our algorithm achieves the lowest iteration complexity, while maintaining the same
per-iteration cost as first-order methods, assuming s = O(y/n) (otherwise, the complexity
Q(s*logn) for sparse phase retrieval would reduce to that of general methods).
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Proposed algorithm

@ Two prevalent loss functions: Intensity-based empirical loss
1 m
fr(x) = —Z(|<ai,w>\2—yi)2, (3)
@ Amplitude-based empirical loss
1 i 2
= 2—2 (@i, )| — Vi)~ (4)
@ The intensity-based loss f;(x) is smooth, while the amplitude-based loss f,(x) is

non-smooth because of the modulus.
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Proposed algorithm

Step 1: Identify free and fixed variables

o We identify free variables using amplitude-based loss f4(x):

Sky1 = supp (7—{5(:1:’C — anA(.’I:k))) ,
H,: s-sparse hard-thresholding operator.
@ The set of fixed variables is the complement of S, .

@ Only free variables are updated using the (approximate) Newton direction, while the fixed
variables are directly set to zero.
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Proposed algorithm

Step 2: Compute search direction

@ We update free variables based on intensity-based loss f;:

k+1 __ .k _ ak
x$k+1 - m$k+1 p$k+1’ (5)

P, .+ approximate Newton direction over S, calculated by
H§k+lxsk+1p§k+l = _H§k+la‘]k+lw§k+l + gglﬂ»l. (6)
g§k+l = I:vfl (mk)] $k+1, and H§k+1rsk+l = I:VQf[ (wk)] Sk+17$k+1.

@ Our algorithm exploits second-order information when computing search direction, leading
to a faster convergence than projected gradient method.
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Proposed algorithm

Algorithm 1: Proposed algorithm

Input: Data {a,,y;}™,, sparsity s, initial estimate x°, and stepsize 7.
for k=1,2,... do

Identify the set of free variables S;,1 = supp(H.(x* — nV fa(x*)));

Compute the search direction p%  over S, by solving (6);
Update z*+!:

k+1

ko ok B+l _
$5k+1 - xSlH»l p3k+17 and iES;“ =0.

end
Output: x*+!.
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Theoretical analysis

If the number of measurements m > c¢,s>logn, then with probability at least 1 — (cok + c3)m™!,
the sequence {x*},>, generated by Algorithm 1 converges to the ground truth x* at a
quadratic rate after at most O(log(||z||/z%;,)) iterations, i.e.,

dist(z*+!, x) < p - dist®(z", x), VEk >k,

i

min

where k < cylog ([|2%]| /2m) + ¢5, and 2%, is the smallest nonzero entry in magnitude of z*.
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Numerical results
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Relative error versus iterations, with signal dimension n = 5000 and sample size m = 3000.
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Numerical results
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Phase transition for signals of dimension n = 3000 with sparsity levels s = 25 and 50.
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Thank you!
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