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Sparse phase retrieval

The phase retrieval problem is to reconstruct an n-dimensional signal x♮ using its
magnitude-only measurements:

yi = |⟨ai, x♮⟩|2, i = 1, 2, · · · , m. (1)

{yi}m
i=1: phaseless measurements; {ai}m

i=1: sensing vectors; x♮: target signal to be recovered.

The sparse phase retrieval problem can be expressed as

Find x, subject to |⟨ai, x⟩|2 = yi ∀ i = 1, . . . , m, and ∥x∥0 ≤ s. (2)

Phase retrieval arises in many applications in scientific imaging, such as diffraction
imaging, astronomical imaging, X-ray crystallography, optics, etc.
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Overview of state-of-the-art algorithms

Methods Per-iteration computation Iteration complexity Loss function

ThWF [1] O(n2 log n) O(log(1/ϵ)) fI(x)
SPARTA [2] O(ns2 log n) O(log(1/ϵ)) fA(x)
CoPRAM [3] O(ns2 log n) O(log(1/ϵ)) fA(x)
HTP [4] O((n + s2)s2 log n) O(log(log(ns2)) + log(∥x♮∥/x♮

min)) fA(x)
Proposed O((n + s2)s2 log n) O(log(log(1/ϵ)) + log(∥x♮∥/x♮

min)) fI(x), fA(x)

n: signal dimension; s: sparsity; x♮
min: the smallest nonzero entry in magnitude of x♮.

Our algorithm achieves the lowest iteration complexity, while maintaining the same
per-iteration cost as first-order methods, assuming s = O(

√
n) (otherwise, the complexity

Ω(s2 log n) for sparse phase retrieval would reduce to that of general methods).
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Proposed algorithm

Two prevalent loss functions: Intensity-based empirical loss

fI(x) := 1
4m

m∑
i=1

(|⟨ai, x⟩|2 − yi)
2

, (3)

Amplitude-based empirical loss

fA(x) := 1
2m

m∑
i=1

(|⟨ai, x⟩| − √
yi)2

. (4)

The intensity-based loss fI(x) is smooth, while the amplitude-based loss fA(x) is
non-smooth because of the modulus.
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Proposed algorithm

Step 1: Identify free and fixed variables

We identify free variables using amplitude-based loss fA(x):

Sk+1 = supp
(
Hs(xk − η∇fA(xk))

)
,

Hs: s-sparse hard-thresholding operator.

The set of fixed variables is the complement of Sk+1.

Only free variables are updated using the (approximate) Newton direction, while the fixed
variables are directly set to zero.
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Proposed algorithm

Step 2: Compute search direction

We update free variables based on intensity-based loss fI :

xk+1
Sk+1

= xk
Sk+1

− pk
Sk+1

, (5)

pk
Sk+1

: approximate Newton direction over Sk+1, calculated by

Hk
Sk+1,Sk+1

pk
Sk+1

= −Hk
Sk+1,Jk+1

xk
Jk+1

+ gk
Sk+1

. (6)

gk
Sk+1

=
[
∇fI(xk)

]
Sk+1

, and Hk
Sk+1,Sk+1

=
[
∇2fI(xk)

]
Sk+1,Sk+1

.

Our algorithm exploits second-order information when computing search direction, leading
to a faster convergence than projected gradient method.
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Proposed algorithm

Algorithm 1: Proposed algorithm
Input: Data {ai, yi}m

i=1, sparsity s, initial estimate x0, and stepsize η.
for k = 1, 2, . . . do

Identify the set of free variables Sk+1 = supp(Hs(xk − η∇fA(xk)));

Compute the search direction pk
Sk+1

over Sk+1 by solving (6);

Update xk+1:
xk+1

Sk+1
= xk

Sk+1
− pk

Sk+1
, and xk+1

Sc
k+1

= 0.

end
Output: xk+1.
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Theoretical analysis

Theorem

If the number of measurements m ≥ c1s2 log n, then with probability at least 1 − (c2k̄ + c3)m−1,
the sequence {xk}k≥1 generated by Algorithm 1 converges to the ground truth x♮ at a
quadratic rate after at most O

(
log(∥x♮∥/x♮

min)
)

iterations, i.e.,

dist(xk+1, x♮) ≤ ρ · dist2(xk, x♮), ∀ k ≥ k̄,

where k̄ ≤ c4 log
(
∥x♮∥/x♮

min
)

+ c5, and x♮
min is the smallest nonzero entry in magnitude of x♮.
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Numerical results
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(a) Noise free

0 20 40 60 80 100
Iterations

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r

CoPRAM
HTP
ThWF
SparTA
Proposed

(b) Noisy

Relative error versus iterations, with signal dimension n = 5000 and sample size m = 3000.
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Numerical results
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(a) s = 25
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(b) s = 50

Phase transition for signals of dimension n = 3000 with sparsity levels s = 25 and 50.
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Thank you!
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