AntGPT: Can Large Language Models Help Long-term Action

Anticipation from Videos? 36

ICLR 2024

Qi Zhao (Kevin)^{*1}, Shijie Wang^{*1}, Ce Zhang¹, Changcheng Fu¹, Minh Quan Do¹, Nakul Agarwal², Kwonjoon Lee², Chen Sun¹

1: Brown University, 2: Honda Research Institute

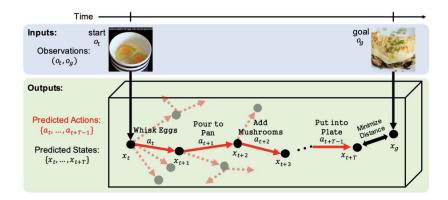
Task Definition: Long-term Action Anticipation (LTA)

Observed Video

Future Actions {cut cheese, ..., put cheese}

- Given video observations, the LTA task aims to predict future actions of the person in long time spans.
- Different benchmarks has different task setup and metrics:
 - Ego4D LTA (order-specific): edit distance
 - EK-55/GAZE (order-agnostic): mean average precision

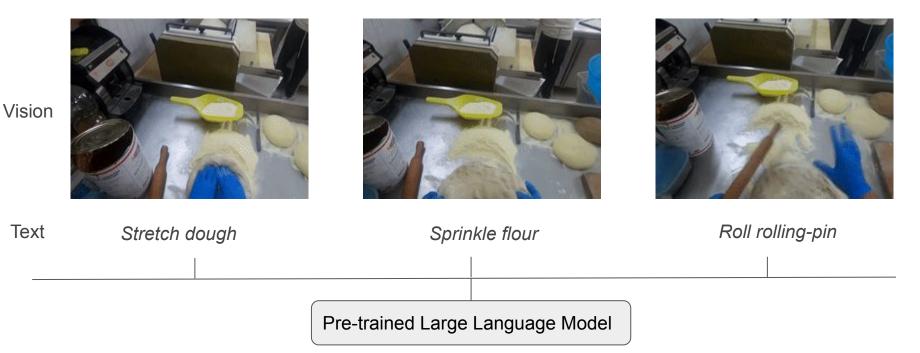
Question 1: Can we infer goals from LLMs that are helpful for LTA?



- 1. Can LLMs infer reasonable goals from observations?
- Does inferring goals from LLM improve models' ability to predict future actions?

- Bottom-up LTA: Predict the next actions auto-regressively from previous actions *E.g. predicting next action such as "mix eggs" from history actions "crack eggs".*
- Top-down LTA: Infer the **goal** of the actor, then predict future actions to accomplish the **goal**. *E.g. Predict next actions based on history actions and a long-term goal "making egg fried rice".*

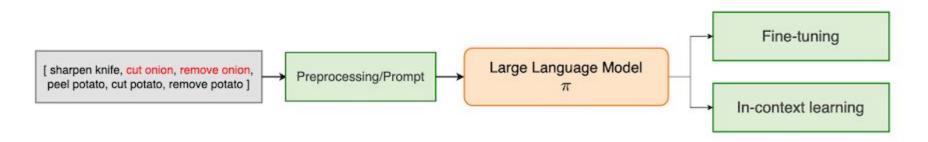
Question 2: Can LLMs help model temporal dynamics?



LLMs demonstrated strong ability for sequence modeling and generation. How can we utilize it for LTA?

AntGPT: what is a good interface to interact with LLMs?

We use CLIP embeddings to train a transformer-based action recognition model to output action labels



We then preprocess the action labels into text tokens to perform fine-tuning or build prompt for ICL.

Can LLM generate goals from action observations?

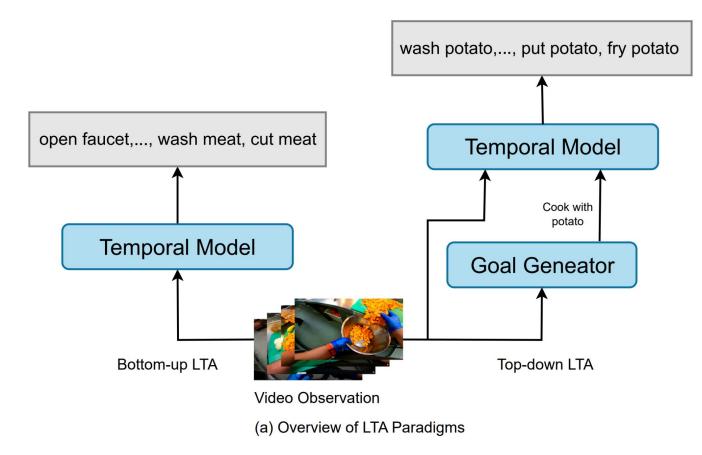
- Bottom-up LTA: Predict the next actions solely from previous actions
- Top-down LTA: Infer the **goal** of the actor, then predict future actions to accomplish the **goal**.



Goal Prompts q_{goal}

(c) Few-shot Goal Generation with LLM

Do goals inferred by LLM benefit LTA?



Do goals reasoned by LLM benefit LTA?

Method	Ego4d v1 (ED)		EK-55 (mAP)		EGTEA (mAP)			
	Verb↓	Noun↓	$ALL\uparrow$	Freq ↑	Rare ↑	$ALL\uparrow$	Freq ↑	Rare ↑
image features image features + Llama2 inferred goals image features + GPT-3.5 inferred goals	0.735 0.728 0.724	0.753 0.747 0.744	38.2 40.1 40.1	59.3 58.1 58.8	29.0 32.1 31.9	78.7 80.0 80.2	84.7 84.6 84.8	68.3 70.0 72.9
image features + oracle goals*	-	-	40.9	58.7	32.9	81.6	86.8	69.3

Table 1: **Impact of goal conditioning on LTA performance.** Goal-conditioned (top-down) models outperforms the bottom-up model in all three datasets. We report edit distance for Ego4D, mAP for EK-55 and EGTEA. All results are reported on the validation set.

Inferred goals lead to **consistent improvements** for the top-down approach, especially for the rare actions of EK-55 and Gaze.

Do goals reasoned by LLM benefit LTA?

Method	EK-55			GAZE		
	ALL	FREQ	RARE	ALL	FREQ	RARE
I3D [9]	32.7	53.3	23.0	72.1	79.3	53.3
ActionVLAD [24]	29.8	53.5	18.6	73.3	79.0	58.6
Timeception [28]	35.6	55.9	26.1	74.1	79.7	59.7
VideoGraph [29]	22.5	49.4	14.0	67.7	77.1	47.2
EGO-TOPO [38]	38.0	56.9	29.2	73.5	80.7	54.7
Anticipatr [40] AntGPT (ours)	39.1 40.2	58.1 58.8	29.1 32.0	76.8 80.2	83.3 84.5	55.1 74.0

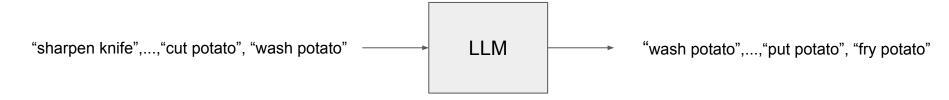
Table 5: Comparison with SOTA methods on the EK-55 and GAZE Dataset in mAP. ALL, FREQ and RARE represent the highest performances on all, frequent, and rare target actions respectively.

Can LLMs Model Temporal Dynamics?

Vision Model (CNN/Transformer...)

wash potato,...,put potato, fry potato

a) LTA with vision models: classification



b) LTA as text sequence completion

Can LLMs Model Temporal Dynamics?

Model	Goal	Input	Verb \downarrow	Noun \downarrow
Transformer	GPT-3.5	image features	0.724	0.744
GPT-3-curie	GPT-3.5	recog actions	0.709	0.729
Transformer	Llama2-13B	image features	0.728	0.747
Llama2-7B	Llama2-13B	recog actions	0.700	0.717

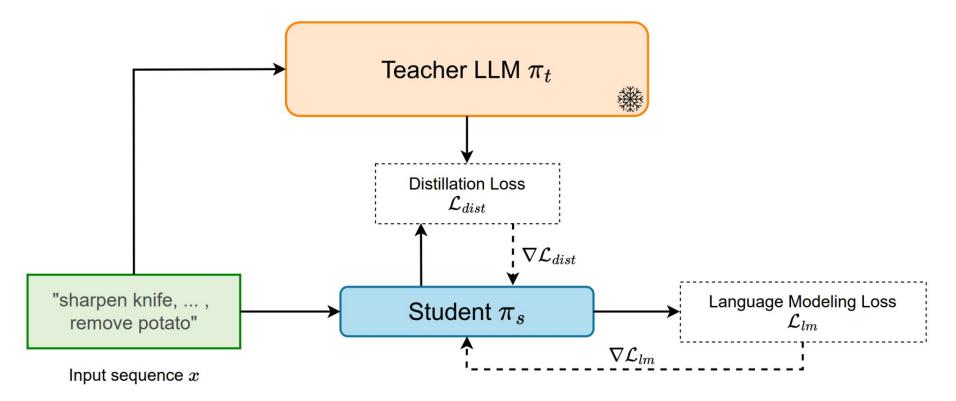
Table 2: Comparison of temporal models for top-downLTA. Results on Ego4D v1 val set.

LLM largely outperforms from-scratched transformers with vision inputs, indicating its advantages on temporal modeling and the effectiveness of using actions as discrete representations.

LLMs benefit from Language Priors

	Seq Type	Verb↓	Noun \downarrow	Action \downarrow
Action Labels: take photo,, open door	Action Labels Shuffled Labels	0.6794 0.6993	0.6757 0.6972	0.8912 0.9040
Shuffled Labels: open potato,, eat mask	Label Indices	0.7249	0.6805	0.9070
Label Indices: 3 21,, 15 7	Table 4: Benefit o Ego4D v2 test set. quences to semanti	ce original	action se-	

Model Distillation



(d) Knowledge Distillation of LLM

Model Distillation

Model	Setting	Verb \downarrow	Noun \downarrow	Action \downarrow
7B 91M	Pre-trained From-scratch	0.6794 0.7176	0.6757 0.7191	0.8912 0.9117
91M	Distilled	0.6649	0.6752	0.8826

Table 5: **LLM as temporal model.** Results on Ego4D v2 test set. Llama2-7B model is fine-tuned on Ego4D v2 training set. 91M models are randomly initialized.

Compare with SoTA models

Method	Version	Verb↓	Noun ↓	Action \downarrow
HierVL [3]	v 1	0.7239	0.7350	0.9276
ICVAE[35]	v 1	0.7410	0.7396	0.9304
VCLIP [12]	v 1	0.7389	0.7688	0.9412
Slowfast [23]	v 1	0.7389	0.7800	0.9432
AntGPT (ours)	v 1	0.6584 ±7.9e-3	0.6546 ±3.8e-3	0.8814±3.1e-3
Slowfast [23]	v2	0.7169	0.7359	0.9253
VideoLLM [10]	v2	0.721	0.725	0.921
PaMsEgoAI [29]	v2	0.6838	0.6785	0.8933
Palm [26]	v2	0.6956	0.6506	0.8856
AntGPT (ours)	v2	0.6503 ±3.6e-3	0.6498 ±3.4e-3	0.8770 ±1.2e-3

Table 6: Comparison with SOTA methods on the Ego4D v1 and v2 test sets in ED@20. Ego4d v1 and v2 share the same test set. V2 contains more training and validation examples than v1.

AntGPT: Can Large Language Models Help Long-term Action

Anticipation from Videos? 36

ICLR 2024

Qi Zhao (Kevin)^{*1}, Shijie Wang^{*1}, Ce Zhang¹, Changcheng Fu¹, Minh Quan Do¹, Nakul Agarwal², Kwonjoon Lee², Chen Sun¹

1: Brown University, 2: Honda Research Institute