Pre-training Sequence, Structure, and Surface Features for Comprehensive Protein Representation Learning

Hasun Yu
Al-based Drug Discovery Team at Kakao Brain

Proteins

Proteins are vital components of biological systems and can be represented in various ways, including their sequences, 3D structures, and surfaces

Protein representation learning

Recent studies have successfully employed sequence- or structure-based representations to address multiple tasks in protein science

...ENNSPEHLKD...

Sequence

Protein representation learning

Recent studies have successfully employed sequence- or structure-based representations to address multiple tasks in protein science

However, there has been an oversight in incorporating protein surface characteristics

...ENNSPEHLKD...

Sequence

Objective

We propose a pre-training strategy that incorporates all three essential aspects of proteins: sequences, 3D structures, and surfaces

Method	Sequence Encoder	Structure Encoder	Sequence Pre-training	Structure Surface Pre-training Encoder		Surface Pre-training	
CNN	<u> </u>						
Transformer	✓						
GVP		\checkmark					
GearNet		\checkmark					
ESM-1b	✓		\checkmark				
ProtBert	✓		\checkmark				
DeepFRI	✓	\checkmark	\checkmark				
LM-GVP	✓	\checkmark	\checkmark				
ESM-GearNet	✓	\checkmark	\checkmark				
GearNet-MC		\checkmark		\checkmark			
GearNet-DP		\checkmark		\checkmark			
ESM-GearNet-MC	✓	\checkmark	\checkmark	\checkmark			
ESM-GearNet-INR-MC (Ours)	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Overall strategy

Kakao B

Our strategy for pre-training sequences, structures, and surfaces to solve downstream tasks

Kakao Brain

ProteinINR

An overview of our ProteinINR architecture

ProteinINR

Reconstructed meshes and surfaces from ProteinINR for given proteins

Results

Our results show improved performance on downstream tasks with ESM-GearNet-INR and ESM-GearNet-INR-MC

Method	EC		GO	GO-BP		GO-MF		GO-CC		Sum
	$\overline{F_{max}}$	AUPR	F_{max}	AUPR	$\overline{F_{max}}$	AUPR	F_{max}	AUPR	Acc	
ESM-1b [†]	86.9	88.4	45.2	33.2	65.9	63.0	47.7	32.4	-	-
$\mathbf{ESM-2}^{\dagger}$	87.4	88.8	47.2	34.0	66.2	64.3	47.2	35.0	-	-
GearNet	81.6	83.7	44.8	25.2	60.4	52.9	43.3	26.8	46.8	465.5
GearNet-INR	81.4	83.7	44.7	26.5	59.9	52.1	43.0	27.2	47.6	466.1
GearNet-MC	87.2	88.9	49.9	26.4	64.6	55.8	46.9	27.1	51.5	498.3
GearNet-INR-MC	86.9	88.9	49.8	26.0	65.4	56.1	47.7	26.6	51.1	498.5
ESM-GearNet-MC	89.0	89.7	53.5	27.5	68.7	57.9	49.4	32.4	53.8	521.9
ESM-GearNet-INR	89.0	90.3	50.8	33.4	67.8	62.6	50.6	36.9	48.9	530.3
ESM-GearNet-INR-MC	89.6	90.3	51.8	33.2	68.3	58.0	50.4	35.7	50.8	528.1

Take home message

We propose a pre-training strategy that includes the surfaces of proteins using INR, which can lead to better protein representation

Limitation

- Likely low performance for proteins without known structures

Future work

- Generating new proteins from latent representations of surfaces
- Extending this approach to other types of molecules