

A Unified and General Framework for Continual Learning

Zhenyi Wang, Yan Li, Li Shen, Heng Huang

Table 1: A unified framework for CL. We define a generalized CL optimization objective as $\mathcal{L}^{CL} = \mathcal{L}_{CE}(\boldsymbol{x}, y) + \alpha D_{\Phi}(h_{\theta}(\boldsymbol{x}), \boldsymbol{z}) + \beta D_{\Psi}(\theta, \theta_{old})$. Where $\alpha \ge 0, \beta \ge 0, \mathcal{L}_{CE}(\boldsymbol{x}, y)$ is the loss function on new task, $D_{\Phi}(h_{\theta}(\boldsymbol{x}), \boldsymbol{z})$ is *output space* regularization represented as a Bregman divergence associated with function Φ , $D_{\Psi}(\theta, \theta_{old})$ is *weight space* regularization represented as a Bregman divergence from this general optimization objective by setting different Φ , Ψ and Bregman divergence.

Category	Method	Ref	Recover Setting
Bayesian-based	VCL	Nguyen et al. (2018)	$lpha=0, oldsymbol{\Psi}(p)=\int p(oldsymbol{x})\log p(oldsymbol{x})doldsymbol{x}$
Buyesium Sused	NCL	Kao et al. (2021)	$oldsymbol{\Phi}(oldsymbol{p}) = \sum_{i=1}^{i=n} oldsymbol{p}_i \log oldsymbol{p}_i. \ oldsymbol{\Psi} = rac{1}{2} oldsymbol{ heta} ^2$
Regularization-based	EWC	Kirkpatrick et al. (2017)	$lpha=0, oldsymbol{\Psi}(oldsymbol{ heta})=rac{1}{2}oldsymbol{ heta}^TFoldsymbol{ heta}$
	CPR	Cha et al. (2021)	$oldsymbol{\Phi}(oldsymbol{p}) = \sum_{i=1}^{i=n} oldsymbol{p}_i \log oldsymbol{p}_i$
Memory-replay-based	ER	Chaudhry et al. (2019b)	$eta=0, oldsymbol{\Phi}(oldsymbol{p})=\sum_{i=1}^{i=n}oldsymbol{p}_i\logoldsymbol{p}_i$
	DER	Buzzega et al. (2020)	$eta=0, \overline{oldsymbol{\Phi}(oldsymbol{x})}= oldsymbol{x} ^2$
Novel CL method	Refresh Learning	Ours	Unlearn-relearn plug-in

- Forgetting can be beneficial for the human brain in various situations, as it helps in efficient information processing and decision-making.
- CL involves adapting to new tasks and acquiring new knowledge over time. If a model were to remember every detail from all previous tasks, it could quickly become impractical and resource-intensive.
- Forgetting less relevant information helps in managing memory resources efficiently, allowing the model to focus on the most pertinent knowledge.

$$\begin{split} \min_{\boldsymbol{\theta}} & \mathbb{E}_{\rho_{opt}} \mathcal{L}^{CL} \quad \text{(relearn)} \\ s.t. & \rho_{opt} = \min_{\rho} [\mathcal{E}(\rho) = -\mathbb{E}_{\rho} \mathcal{L}^{CL} + \mathbb{E}_{\rho} \log \rho] \quad \text{(unlearn)} \end{split}$$

Algorithm 1 Refresh Learning for General CL.

- 1: **REQUIRE:** model parameters θ , CL model learning rate η ,
- 2: for k = 1 to K do (number of CL steps)
- 3: for j = 1 to J do (unlearn steps)

4:
$$\boldsymbol{\theta}_k^j = \boldsymbol{\theta}_k^{j-1} + \gamma [F^{-1} \nabla \mathcal{L}^{CL}(\boldsymbol{\theta}_k^{j-1})] + \mathcal{N}(0, 2\gamma F^{-1})$$

- 5: end for
- 6: $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k \eta \nabla \mathcal{L}^{CL}(\boldsymbol{\theta}_k^j)$ (relearn step)
- 7: end for

Experiments

Algorithm	CIFAR-10		CIFAR-100		Tiny-ImageNet	
Method	Class-IL	Task-IL	Class-IL	Task-IL	Class-IL	Task-IL
fine-tuning	19.62 ± 0.05	61.02 ± 3.33	9.29 ± 0.33	33.78 ± 0.42	7.92 ± 0.26	18.31 ± 0.68
Joint train	92.20 ± 0.15	98.31 ± 0.12	71.32 ± 0.21	91.31 ± 0.17	59.99 ± 0.19	82.04 ± 0.10
SI	19.48 ± 0.17	68.05 ± 5.91	9.41 ± 0.24	31.08 ± 1.65	6.58 ± 0.31	36.32 ± 0.13
LwF	19.61 ± 0.05	63.29 ± 2.35	9.70 ± 0.23	28.07 ± 1.96	8.46 ± 0.22	15.85 ± 0.58
NCL	19.53 ± 0.32	64.49 ± 4.06	8.12 ± 0.28	20.92 ± 2.32	7.56 ± 0.36	16.29 ± 0.87
GPM	- <u></u>	90.68 ± 3.29	0 <u> </u>	72.48 ± 0.40	· <u> </u>	
UCB		79.28 ± 1.87	·	57.15 ± 1.67		
HAT		92.56 ± 0.78	00	72.06 ± 0.50		
A-GEM	22.67 ± 0.57	89.48 ± 1.45	9.30 ± 0.32	48.06 ± 0.57	8.06 ± 0.04	25.33 ± 0.49
GSS	49.73 ± 4.78	91.02 ± 1.57	13.60 ± 2.98	57.50 ± 1.93		
HAL	41.79 ± 4.46	84.54 ± 2.36	9.05 ± 2.76	42.94 ± 1.80		
oEWC	19.49 ± 0.12	64.31 ± 4.31	8.24 ± 0.21	21.2 ± 2.08	7.42 ± 0.31	15.19 ± 0.82
oEWC+refresh	$\textbf{20.37} \pm \textbf{0.65}$	$\textbf{66.89} \pm \textbf{2.57}$	$\textbf{8.78} \pm \textbf{0.42}$	$\textbf{23.31} \pm \textbf{1.87}$	$\textbf{7.83} \pm \textbf{0.15}$	$\textbf{17.32} \pm \textbf{0.85}$
CPR(EWC)	19.61 ± 3.67	65.23 ± 3.87	8.42 ± 0.37	21.43 ± 2.57	7.67 ± 0.23	15.58 ± 0.91
CPR(EWC)+refresh	$\textbf{20.53} \pm \textbf{2.42}$	$\textbf{67.36} \pm \textbf{3.68}$	$\textbf{9.06} \pm \textbf{0.58}$	$\textbf{22.90} \pm \textbf{1.71}$	$\textbf{8.06} \pm \textbf{0.43}$	$\textbf{17.90} \pm \textbf{0.77}$
ER	57.74 ± 0.27	93.61 ± 0.27	20.98 ± 0.35	73.37 ± 0.43	9.99 ± 0.29	48.64 ± 0.46
ER+refresh	$\textbf{61.86} \pm \textbf{1.35}$	$\textbf{94.15} \pm \textbf{0.46}$	$\textbf{22.23} \pm \textbf{0.73}$	$\textbf{75.45} \pm \textbf{0.67}$	$\textbf{11.09} \pm \textbf{0.46}$	$\textbf{50.85} \pm \textbf{0.53}$
DER++	72.70 ± 1.36	93.88 ± 0.50	36.37 ± 0.85	75.64 ± 0.60	19.38 ± 1.41	51.91 ± 0.68
DER+++refresh	$\textbf{74.42} \pm \textbf{0.82}$	$\textbf{94.64} \pm \textbf{0.38}$	$\textbf{38.49} \pm \textbf{0.76}$	$\textbf{77.71} \pm \textbf{0.85}$	$\textbf{20.81} \pm \textbf{1.28}$	$\textbf{54.06} \pm \textbf{0.79}$

Table 2: **Task-IL and class-IL** overall accuracy on CIFAR10, CIFAR-100 and Tiny-ImageNet, respectively with memory size 500. '—' indicates not applicable.

Thank you