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Introduction: Energy Based Model

Energy-based models (EBMs) provide a powerful
formulation for estimating the distribution of random
variable x

pθ(x) =
1
Zθ

exp(fθ(x)),

EBMs have exhibited their flexibility and practicality in a
variety of application scenarios.
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Introduction: Energy Based Model

Training energy-based models (EBMs) on high-dimensional
data can be both challenging and time-consuming. There exists
a noticeable gap in sample quality between EBMs and other
generative frameworks like GANs and diffusion models.
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Challenges of Training EBM

The training of EBM requires sampling from the current
estimated distribution

L′(θ) = Epdata

[
∂

∂θ
fθ(x)

]
− Epθ

[
∂

∂θ
fθ(x)

]
,

Sampling is often achieved through MCMC, which can be
challenging with high-dimensional data;
Previous work [7] proposed to estimate a sequence of
EBMs defined on increasingly noisy versions of the data
and jointly estimate them by maximizing recovery
likelihood.
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Diffusion Recovery Likelihood (DRL)

Assume a sequence of noisy training example perturbed by a
Gaussian diffusion process: x0, x1, ..., xT.
xt+1 = αt+1xt + σt+1ϵ, x0 ∼ pdata, ϵ ∼ N (0, I).
Denote yt = αt+1xt and fit pθ(yt) =

1
Zθ,t

exp(fθ(yt; t)) for
marginal distribution;
The conditional distribution is given by

pθ(yt|xt+1) =
1

Z̃θ,t(xt+1)
exp

(
fθ(yt; t)−

1
2σ2

t+1
∥yt − xt+1∥2

)
Sample iteratively with Langevin dynamics:

ỹτ+1
t = ỹτ

t +
s2

t
2

(
∇yfθ(ỹτ

t ; t)−
1

σ2
t+1

(ỹτ
t − xt+1)

)
+ stϵ

τ
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Cooperative Diffusion Recovery Likelihood (CDRL)

Although DRL makes sampling easier by sampling from
pθ(yt|xt+1), the initialization of MCMC sampling xt+1, may still
be far from the data manifold of yt.
We propose to learn an extra initializer model to further close
this gap qϕ(yt|xt+1) ∼ N (gϕ(xt+1; t), σ̃2

t I).
Cooperative Training:

Given observation xt+1, initializer qϕ makes the initial guess ŷy.
ŷt is then modified by learned recovery-likelihood through
Langevin sampling to get ỹt.
Update initialized using modified samples as target:

Lt(ϕ) =
1
n

n∑
i=1

[
− 1

2σ̃2
t
∥ỹt,i − gϕ(xt+1,i; t)∥2

]
Update energy models using modified samples:

∇θJt(θ) = ∇θ

[
1
n

n∑
i=1

fθ(yt,i; t)−
1
n

n∑
i=1

fθ(ỹt,i; t)
]
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Training of CDRL
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Sampling of CDRL
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Unconditional Generation
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Sampling Acceleration

We applied post-training techniques to accelerate sampling.
Langevin sampling step:

ỹτ+1
t = ỹτ

t +
s2

t
2

(
∇yfθ(ỹτ

t ; t)−
1

σ2
t+1

(ỹτ
t − xt+1)

)
+ stϵ

τ ,

We decrease the number of sampling steps, and
meanwhile adjust the MCMC sampling step size to be
inversely proportional to the square root of the number of
sampling steps.



Learning
Energy-Based

Models by
Cooperative

Diffusion
Recovery
Likelihood

Introduction

Proposed
Framework

Experimental
Results

Conclusion

References

11/19

Conditional Generation

Following [15], we can apply classifier-free guidance to CDRL
by estimating both conditional and unconditional distributions.

log p̃θ(yt|c) = (w + 1)fθ(yt; c, t)− wfθ(yt; t) + const.
q̃ϕ(yt|c, xt+1) ∼ N

(
(w + 1)gϕ(xt+1; c, t)− wgϕ(xt+1; t), σ̃2

t I
)
.



Learning
Energy-Based

Models by
Cooperative

Diffusion
Recovery
Likelihood

Introduction

Proposed
Framework

Experimental
Results

Conclusion

References

12/19

Attribution-Compositional Generation

Similar to [5][20], given two energy functions trained on two
conditionally independent concepts c1 and c2, we can estimate the
energy conditioning on both concepts using:

log pθ(x|c1, c2) = log pθ(x|c1) + log pθ(x|c2)− log pθ(x) + const.
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Out-Of-Distribution Detection

The fitted energy function in CDRL naturally forms a
score reflecting the log-likelihood of the data.
We employ the model trained on CIFAR-10 as a detector
and use the energy at the lowest noise level to serve as the
OOD prediction score.
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Conclusion and our contributions

This paper tries to push forward the progress of development of
Energy Based Models.

We propose cooperative diffusion recovery likelihood
(CDRL) that tractably and efficiently learns and samples
from a sequence of EBMs and MCMC initializers;
Empirically we demonstrate that CDRL achieves
significant improvements on sample quality compared to
existing EBM approaches;
We show that CDRL has great potential to enable more
efficient sampling with sampling adjustment techniques;
We demonstrate CDRL’s ability in various tasks like
unconditional generation, conditional generation,
compositional generation, out-of-distribution (OOD)
detection, etc.
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Thank you for listening!
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