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Introduction: Energy Based Model

Learning

Energy. Based m Energy-based models (EBMs) provide a powerful
Models by

Cooperative formulation for estimating the distribution of random
Diffusion

Recovery variable x
Likelihood 1

po(x) = 7 exp(fy(x)),

m EBMs have exhibited their flexibility and practicality in a
variety of application scenarios.
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Introduction: Energy Based Model

Ent:y'[‘é”agsed Training energy-based models (EBMs) on high-dimensional

] data can be both challenging and time-consuming. There exists
Cooperative . . .
Diffusion a noticeable gap in sample quality between EBMs and other
ecovery . K i i
Likelihood generative frameworks like GANs and diffusion models.
Models FID |
Introduction EBM based method
NT-EBM (Nijkamp et al . 2022) 7812  Models FID |
LP-EBM (Pang et al . 2020) 70.15 T GAN based method
Adaptive CE (Xiao & Har, 2022) 65.01
EBM-SR (Nijkamp etal , 2019) 4450  WGAN-GP(Gulra al., 2017)
JEM (Grathwohl et al., 2020) 38.40 SN-GAN (Miyato e 018)

38.20 BigGAN (Brock et al', 2019)

eGAN2-DiffAu

EBM-| }-Cl—. (Gao et nl 37.30 ment (Zhao et al/,[2020)
CoopVAEBM (Xie et al. :(mh 36.20 iffusion-GAN (Xiao et al’, 202

CoopNets (Xic et al, 20184) 33.61 StyleGAN2-ADA (Karras et al/, 2020)

Divergence Triangle (Han etal,202¢) ~ 30.10 Score based and Diffusion method

VARA (Grathwohl et al., 2021k) 27.50

EBM-CD (Du et al, 202 25.10 NCSN (Song & Ermon, 2019) 25.32
GEBM (Arbel ot al . 202 1931 NCSN-v2 (Song & Ermon, 2020) 10.87
HAT-EBM (Hill et 1930  NCSN++ (Song etal., 2021) 2.20
CF-EBM (Zhao ¢ 16.71 DDPM Distillation (Luhman & Luhmar, 2021)  9.36
CoopFlow (Xie etal , 7071) 15.80 DDPM++(VP,NLL) (Kim et al’, 2021) 345
CLEL-base (Lee etal., 2023) 1527 ~ DDPM (Hoetall.2020) a7
VAEBM (Xiao et al . 2021) 1216  DDPM++(VP.FID) (Kim etal|,2021) 247
DRL (Gao et al., 2021) 9.58

CLEL-large (Lee etal.,2023) 8.61

EGC (Unsupervised) (Guo et al’, 2023)  5.36

FID Score for CIFAR-10 unconditional Generation



Challenges of Training EBM

Learning
Energy-Based
Models by
Cooperative

Diffusion m The training of EBM requires sampling from the current

Recovery

Likelihood estimated distribution

/ 0
Proposed L (0) = Pdata |: f9( ):| - ]E;De [aefG(X)] )

m Sampling is often achieved through MCMC, which can be
challenging with high-dimensional data;

m Previous work [7] proposed to estimate a sequence of
EBMs defined on increasingly noisy versions of the data

and jointly estimate them by maximizing recovery
likelihood.



Diffusion Recovery Likelihood (DRL)

Learning

Energy-Based . ..
Madels by Assume a sequence of noisy training example perturbed by a

Cooperative H H . .
o Gaussian diffusion process: xq, X1, ..., X7.
Recovery

Likelihood B Xit] = 41X + O¢4+1€, X0 ™~ Pdata, € ~ N(O, I)

m Denote y; = ay11%¢ and fit pg(y,) = Z}),: exp(fy(y; t)) for

marginal distribution;
Proposed

Framework

m The conditional distribution is given by

1 1
PoFlxes1) = ———— exp <@<yﬁt>nytxﬁd|2)
Ze,t(xt+1) 20%—1—1

m Sample iteratively with Langevin dynamics:

2
r - s - 1 .
T =1 (VT G xe)) + s
Tt+1



Cooperative Diffusion Recovery Likelihood (CDRL)

Learni . . .
Energy-Baced m Although DRL makes sampling easier by sampling from
C"ggsjgfje po(¥t|xt41), the initialization of MCMC sampling x4, may still

Diffusion be far from the data manifold of y,.
Recovery
Likelihood T
remnes m We propose to learn an extra initializer model to further close

this gap ¢g(yi[xir1) ~ N(gg(xXe41;1),571).

S m Cooperative Training:

[FEes m Given observation x;41, initializer g4 makes the initial guess y,.

m §y, is then modified by learned recovery-likelihood through
Langevin sampling to get y..

m Update initialized using modified samples as target:

n

1 1 .
Lid) = > {*ﬁﬂ}’t,i = 9o (Xe41,53 t)||2]
=1

m Update energy models using modified samples:

VoTi(0) = [ Zfe Yeist —*Zfe Vet ]




Training of CDRL

Learning

Energy-Based Algorithm 1 CDRL Training

Models by Input: (1) observed data Xo ~ paaa(X): (2) Number of noise levels 7°; (3) Number of Langevin sampling steps
Cooperative K per noise level; (4) Langevin step size at each noise level s¢; (5) Learning rate 7o for EBM fp: (6) Learning
Diffusion rate 1) for initializer g4;
Rasevay Output: Parameters 6, ¢
Lielfisegd] Randomly initialize € and ¢.
repeat

Sample noise level ¢ from {0, 1, .
Sample € ~ N(0,I). Let X1
Generate the initial sample y,.
Generate the refined sample y by running /& steps of Langevin dynamics starting from y.
Proposed Update EBM parameter 6.

Framework Update initializer parameter ¢.

until converged

T—1}.
Qp1X0 + 016 Ye = a1 (@eXo + Gr€E).

observed examples

Update initializer generated examples

MCMC revision
guided by EBM

\J

| roposal
m‘ | with initializer “
Noisy Data X,y Initial Updated
proposal 3, example ¥,

Clean Data x Update EBM




Sampling of CDRL

Learning
Energy-Based
Models by
Cooperative
Diffusion Algorithm 2 CDRL Sampling

Recovery
Likelihcvc;d Input: (1) Number of noise levels 77; (2) Number of Langevin sampling steps /" at each noise level; (3) Langevin

step size at each noise level d¢; (4) Trained EBM fo: (5) Trained initializer g¢;
Output: Samples X
Randomly initialize x7 ~ N(0, I).
fort =7 —1to0do
Generate initial proposal y;.
Update y, to y; by K iterations of Langevin Sampling.
LetX¢ = yi/auq1.
end for

? McMC
output ﬁ updates

Proposed
Framework

Initial
proposal
Initial noise
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Experimental
RESTS

Unconditional Generation

Models

Models

EBM based method

Other likelihood based method

NT-EBM (Nijkamp et al, 2022)
LP-EBM (Pang et al’,2020)
Adaptive CE (Xiao & Har, 2022)
EBM-SR (Nijkamp et al, 2019)
JEM (Grathwohl et al’, 2020)
EBM-IG (Du & Mordatch, 2019)
EBM-FCE (Gao et al., 202()
CoopVAEBM (Xie et al, 2021t)
CoopNets (Xie et al, 2018a)

VAE (Kingma & Welling, 2014)
PixelCNN (Salimans et al}, 2017)
PixelIQN (Ostrovski et al., 2018)
Residual Flow (Chen et al., 2019)
Glow (Kingma & Dhariwal, 2018)
DC-VAE (Parmar et al., 2021)

‘GAN based method

WGAN-GP(Gulrajani et al., 2017)

et all, 2019)

Diffusion-GAN (Xiao et al|, 2022)

ent (Zhao et al., 2020)

CIFAR-10 Sdmples ImageNet (32 x 32) Samples

Divergence Triangle (Han et all, 2020) zn 10
VARA (Grathwohl et al., 2021b) 27.50
EBM-CD (Du etal.. 2021) 25.10
GEBM (Arbel et al , 2021) 19.31
HAT-EBM (Hill et al.. 2022) 19.30
CF-EBM (Zhao et al. 16.71
CoopFlow (Xie et al', 202. 15.80
CLEL-base (Lee et al., 2023) 1527
VAEBM (Xiao et al.. 2021) 12.16
DRL (Gao et al., 2021) 9.58
CLEL-large (Lee et al., 2023) 8.61
EGC (Unsupervised) (Guo et al.2023) ~ 5.36
CDRL (Ours) 431
CDRL-large (Ours) 3.68

StyleGAN2-ADA (Karras et al., 2020) 292 Models ¥ID |
Score based and Diffusion method EBM-IG (Du & Mordateh, 2015) 60.23

PixelCNN (Salimans et al , 2017) 40.51
N Sope & Ermarl 2013 EBM-CD (Du et al , 2021) 3248

N ong &
\ICS\I++ (Sun" etal., 202 )

DDPM Distillation (Luhman & Luhmar,

DDPM++(VP, NLL) (Kim et all, 2021)
DDPM (Ho et al.. 2020)
DDPM-++(VP, FID) (Kim et al, 2021)

2021)

CF-EBM (Zhao et al, 2021) 26
CLEL-base (Lee et al )] 6
DRL (Gao et al|, 2021) - (not converge)
DDPM++(VP,NLL) (Kim et al,, 2021) ~ 8.42

CDRL (Ours) 9.35

FID scores for CIFAR-10 Unconditional Generation

FID scores for ImageNet (32 x 32)
Unconditional Generation



Sampling Acceleration

Learning i _ ni 1 H
ey e We applied post-training techniques to accelerate sampling.

Models by . . .
Cooperative u LangeVIn Sampllng Step-
Diffusion 5
Recovery s 1
ikell T+l - ¢ . .
Likelihood y::— - y: + 5 (Vyf@(yz, t) — O_T(y: — Xt+1)> + StGT,
t+1

m We decrease the number of sampling steps, and
meanwhile adjust the MCMC sampling step size to be

B peitel inversely proportional to the square root of the number of

Results sampling steps.

Number of noise

Models level x Number FID |
of MCMC steps

DRL (Gao et al;, 2021) 6 x 30 = 180 9.58

CDRL 6 x 15 =90 4.31

CDRL (step 8) 6x8=48 4.58

CDRL (step 5) 6 x5 =30 5.37

CDRL (step 3) 6x3=18 9.67

FID scores for CIFAR-10 with Sampling Adjustment



Conditional Generation

L Following [15], we can apply classifier-free guidance to CDRL
Models by by estimating both conditional and unconditional distributions.
Cooperative

Diffusion

Recovery IOg ;’.bQ(yt|c) = (U)+ 1)f9(Yt, C, t) - wfﬁ(yt, t) + const.
Likelihood - ~
G5 (yile,xe1) ~ N ((w+ 1) gg(Xe415 ¢, 1) — wgp(xep15 t),67T) .

Experimental
RESTS

c. FID Vs w

Inception Score

b. Samples with fixed noise d. InceptionWScore vsw



Attribution-Compositional Generation

Learning

Energy-Based o . . .
Models by, Similar to [5][20], given two energy functions trained on two

e conditionally independent concepts ¢; and ¢z, we can estimate the

L'?::;?::;Yd energy conditioning on both concepts using:
1 1

log pg(x|e1, c2) = log pg(x|c1) + log pg(x|ca) — log pe(x) + const.

Male  Smile Young
Experimental -
RESTS
4
X X
x V
X X
x R
X '\/ x
x V R




Out-Of-Distribution Detection

Learning
Energy-Based

C“f;’ﬁjiﬁze m The fitted energy function in CDRL naturally forms a

Diffusion score reflecting the log-likelihood of the data.

Recovery
Likelihood

m We employ the model trained on CIFAR-10 as a detector
and use the energy at the lowest noise level to serve as the
OOD prediction score.

Experimental Cifar-10 N

Results interpolation Cifar-100  CelebA
PixelCNN (Salimans et al , 2017) 0.71 0.63 -
GLOW (Kingma & Dhariwal, 2018)  0.51 0.55 0.57
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68
EBM-IG (Du & Mordatct, 2019) 0.70 0.50 0.70
VAEBM (Xiao et al/, 2021) 0.70 0.62 0.77
EBM-CD (Du et al , 2021) 0.65 0.83 -
CLEL-Base (Lee et al, 2023) 0.72 0.72 0.77
CDRL (ours) 0.75 0.78 0.84

AUROC scores in OOD detection using CDRL and other explicit density models on CIFAR-10



Conclusion and our contributions

Learning

Evmgdye-ﬁsyed This paper tries to push forward the progress of development of

Cooperative Energy Based Models.

Diffusion
Recovery

e, m We propose cooperative diffusion recovery likelihood
(CDRL) that tractably and efficiently learns and samples
from a sequence of EBMs and MCMC initializers;

m Empirically we demonstrate that CDRL achieves
significant improvements on sample quality compared to
existing EBM approaches;

Conclusion

m We show that CDRL has great potential to enable more
efficient sampling with sampling adjustment techniques;

m We demonstrate CDRL's ability in various tasks like
unconditional generation, conditional generation,
compositional generation, out-of-distribution (OOD)
detection, etc.
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Thank you for listening!

Conclusion
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