Google Research

Introduction

ADAPTIVE REGRET FOR BANDITS MADE POSSIBLE:

Carnegie TWO QUERIES SUFFICE

Mellon

University Zhou Lu ', Richard Zhang 4, Xinyi Chen *#, Fred Zhang *, David Woodruff ##, Elad Hazan '

Background/Related Works

Motivation:
e Fast changing states pose a significant challenge to online optimization
e Want to perform rapid adaptation under limited observation
e The classic metric of regret incentivizes static behavior and is not correct in changing
environments.
e Previous works proposed the notion of (strongly) adaptive regret, defined as the maximum
regret over any continuous interval in time.

Can we efﬂCiently SA-regret(A, I) = max thTemt — m;inZEtTei ,
learn the best B = Dot
learning
rate / optimi zer Table 1: Adaptive regret bounds and query efficiency in the adversarial multi-armed bandits setting.
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Two Queries Suffice

e In the bandit setting, there is a Omega(l) lower bound for SA-regret!

o Consider two arms: each interval with sublinear regret guarantee requires trying both arms.
e However, with two queries per round, we can achieve an optimal sqrt(l) bandit algorithm.
e Crucially decouples the action and observation distribution, unlike EXP4 or previous algorithms
e For multi-arm bandit, we achieve optimal dependence on the number of arms.

Theorem 1 (Adaptive regret minimization for multi-armed bandits). For the multi-armed bandits
problem with n arms and T rounds, Algorithm 1 achieves an expected adaptive regret bound of

@, (\/ nllogn lagl":’ T ), using two queries per round.
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Figure 1: Comparison plots of the algorithm rewards in the learning with expert advice setting.
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Algorithm Overview

Algorithm 1 Strongly Adaptive Bandit Learner (StABL)

e EXP3-type algorithms

1: Input: general EXP3 algorithm .4 and horizon T

for both the black-box

2: Construct geometric interval set S = {[s2¥, (s +1)2¥ —1] |0 < k <logT,s € N*}. base Ieam_ers and the
3: Construct B = log T independent instances of EXP3 algorithm .4, where A, optimizes each meta-algorithm

{I € S|2F = |I|} one after another since they don’t overlap.

5: Denote vit, 1) € R to be-the dissibution cver arms by Ay a time s, and »(t,K) tobe tne  ® Directly sing EXP3 in
probability of sampling arm % by A, at time ¢. th_e MAB setting will
6: Define 1 = min { 1/2/n, 1//n[2F |, and initialize w1 (k) = 1 for all k € [B]. fail, because the
7. forr = 1,....T do weight distribution
8: LetW, =), wy(k)andp(t) = W%(, wi(k), ...) be the distribution over the base learners. might become
9: Foralli € [n], let unbalanced
maxy, v(t, k)? n >k Ut k)i
25", maxy v(t, k)? 2B e Use addition
Observe that this defines a probability distribut] oL 7. arms. observation to create
10: |Sample z; ~ >, p(t)kv(t, k), and in parallel sample z; ~ P(t). unbiased estimators of
// Only the second sample z, will be used for weight updating. the loss vector with
11:  Play z, suffer loss 7, e, and observe loss £, e,,. Compute loss estimator controllable variance
e A naive (but sub-
optimal) choice is to
12:  Update each EXP3 instance with the loss estimator /;, via Algorithm 2. R sample uniformly over
13:  Update the meta-algorithm’s weights over base learners via the loss estimator ¢;. For each k, the arms with O(n"2)
update w; 1 (k) as follows, variance
2kt +1
w1 (k) = { yu,;(k) (1 4+ ni7e(k)) els|e e Use importance

where 7, (k) = £ 3, p(t)rv(t, k) — £ v(t, k).
14: end for

Conclusion

We study adaptive regret under the limited observation
model. Our result not only

@® improves the state-of-the-art query efficiency of
O(loglog T) in Lu & Hazan (2023)

@® matches the lower bound of the bandit setting
Daniely et al. (2015)

@® providing a sharp characterization of the query
efficiency of adaptive regret.

This has multiple implications for:

Learning rate adaptation
Learning to optimize
Meta-learning

Adaptive gradient methods
Data-driven algorithm design

sampling to reduce
variance to O(n)

Next Steps

Explore vs Exploit: UCB coefficient, random exploration/restarts,
algorithm selection between explorative vs exploitative.

Multimetric Optimization: Scalarizations can adaptively explore
the Pareto frontier, especially when parts of the Pareto frontier are
targeted.

Transfer Learning: Balancing between the algorithms that 1) uses
all the prior data and algorithms that 2) ignores all the prior data

Batch Setting: Ensembling acquisitions and strategies in parallel in
data-starved environments.

Early Stopping: Early stopping is trading off between 1) never
stopping for maximum exploration and 2) stopping early to save
resources.
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