Google Research

ADAPTIVE REGRET FOR BANDITS MADE POSSIBLE: TWO QUERIES SUFFICE

Zhou Lu¹, Richard Zhang², Xinyi Chen^{1,2}, Fred Zhang³, David Woodruff^{2,4}, Elad Hazan^{1,2} {¹ Princeton University, ² Google, ³ UC Berkeley, ⁴ Carnegie Mellon University}

Background/Related Works

Motivation:

- Fast changing states pose a significant challenge to online optimization
- Want to perform rapid adaptation under <u>limited observation</u>
- The classic metric of regret incentivizes static behavior and is not correct in changing environments.
- Previous works proposed the notion of (strongly) adaptive regret, defined as the maximum regret over any continuous interval in time.

Can we efficiently learn the best learning rate/optimizer that <u>adapts to</u> <u>changing</u> environments (i.e. learn a schedule)?

SA-regret(
$$\mathcal{A}, I$$
) = $\max_{s-j=I} \left[\sum_{t=j}^{s} \ell_t^\top e_{x_t} - \min_i \sum_{t=j}^{s} \ell_t^\top e_i \right]$

Table 1: Adaptive regret bounds and query efficiency in the adversarial multi-armed bandits setting.

Algorithm	Adaptive regret bound	Number of queries
FLH Hazan & Seshadhri (2009)	\sqrt{nT}	$O(\log T)$
SAOL Daniely et al. (2015)	$\sqrt{nI\log T}$	$O(\log T)$
EFLH Lu & Hazan (2023)	$I^{\frac{1}{2}+\varepsilon}\cdot \sqrt{n\log T}$	$O\left(\frac{\log\log T}{\varepsilon}\right)$
This paper (Theorem 1)	$\sqrt{nI\log n} \cdot \log^{1.5} T$	2

Two Queries Suffice

- In the bandit setting, there is a **Omega(I)** lower bound for SA-regret!
- Consider two arms: each interval with sublinear regret guarantee requires trying both arms.
- However, with two queries per round, we can achieve an optimal sqrt(I) bandit algorithm.
- Crucially decouples the action and observation distribution, unlike EXP4 or previous algorithms
- For multi-arm bandit, we achieve optimal dependence on the number of arms.

Theorem 1 (Adaptive regret minimization for multi-armed bandits). *For the multi-armed bandits* problem with n arms and T rounds, Algorithm 1 achieves an expected adaptive regret bound of $O\left(\sqrt{nI\log n}\log^{1.5}T\right)$, using two queries per round.

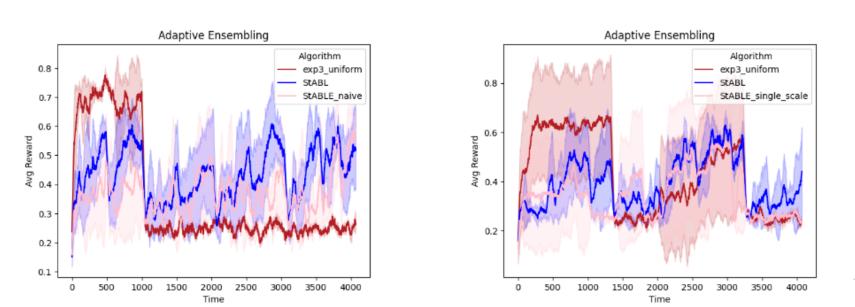
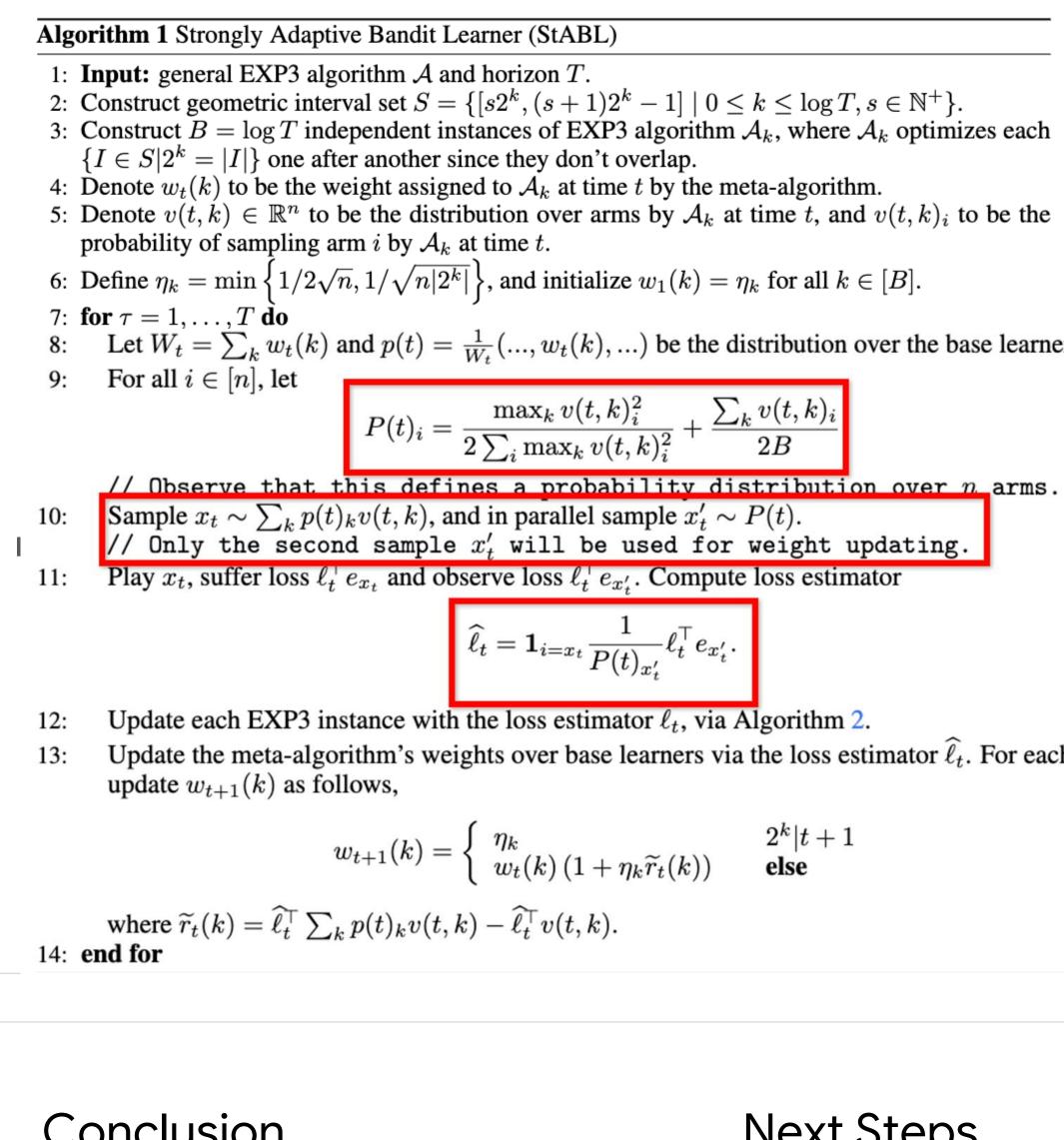


Figure 1: Comparison plots of the algorithm rewards in the learning with expert advice setting.

Introduction

Results

Main Algorithm (StABL)



Conclusion

We study adaptive regret under the limited observation model. Our result not only

- improves the state-of-the-art query efficiency of O(log log T) in Lu & Hazan (2023)
- matches the lower bound of the bandit setting Daniely et al. (2015)
- providing a sharp characterization of the query efficiency of adaptive regret.

This has multiple implications for:

- Learning rate adaptation
- Learning to optimize
- Meta-learning
- Adaptive gradient methods
- Data-driven algorithm design

onclusion

Method

Google DeepMind

Let $W_t = \sum_k w_t(k)$ and $p(t) = \frac{1}{W_t}(..., w_t(k), ...)$ be the distribution over the base learners.

 $\sum_{k} v(t,k)$ $\max_k v(t,k)_i^2$ $2\sum_{k} \max_{k} v(t,k)$ // Observe that this defines a probability distribution over n arms. // Only the second sample x'_t will be used for weight updating. Play x_t , suffer loss $\ell_t^+ e_{x_t}$ and observe loss $\ell_t^+ e_{x'_t}$. Compute loss estimator

$$t = \mathbf{1}_{i=x_t} \frac{1}{P(t)_{x'_t}} \ell_t^\top e_{x'_t}.$$

Update the meta-algorithm's weights over base learners via the loss estimator $\hat{\ell}_t$. For each k,

$$egin{aligned} &\eta_k \ &w_t(k)\left(1+\eta_k\widetilde{r}_t(k)
ight) \ &- \widehat{\ell}_t^ op v(t,k). \end{aligned}$$

$2^{k}|t+1$ else

Algorithm Overview

- EXP3-type algorithms for both the black-box base learners and the meta-algorithm
- Directly using EXP3 in the MAB setting will fail, because the weight distribution might become unbalanced
- Use addition observation to create unbiased estimators of the loss vector with controllable variance
- A naïve (but suboptimal) choice is to sample uniformly over the arms with $O(n^2)$ variance
- Use importance sampling to reduce variance to O(n)

Next Steps • Explore vs Exploit: UCB coefficient, random exploration/restarts, algorithm selection between explorative vs exploitative. • Multimetric Optimization: Scalarizations can adaptively explore the Pareto frontier, especially when parts of the Pareto frontier are targeted. • **Transfer Learning:** Balancing between the algorithms that 1) uses all the prior data and algorithms that 2) ignores all the prior data

- **Batch Setting:** Ensembling acquisitions and strategies in parallel in data-starved environments.
- **Early Stopping:** Early stopping is trading off between 1) never stopping for maximum exploration and 2) stopping early to save resources.