

MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images

Authors: Xurui Li^{*}, Ziming Huang^{*}, Feng Xue, Yu Zhou⁺ Speaker: Xurui Li

* Contributed Equally + Corresponding Authors

Characteristics of industrial anomalies

Current methods are based on the text-to-image of CLIP

Characteristics of industrial anomalies

Discriminative characteristic

Normal regions could find similar regions in other unlabeled images Abnormal regions only have a few similar regions

Mutual Scoring (MuSc)

No training No text prompt No additional normal reference images

1. Local Neighborhood Aggregation with Multiple Degrees (LNAMD)

2. Mutual Scoring Mechanism (MSM)

Aggregated patch tokens: $\hat{p}_{i,l}^{m,r}$

3. Classification Re-Scoring with Constrained Image-level Neighborhood

ViT extracts the image-level features of image I_i as F_i Similarity matrix W, $W_{i,j} = F_i \cdot F_j$

Multi-window Mask Operation (MMO) is used to constrain the re-scoring images

$$M_k(i,j) = \begin{cases} 1, & I_j \in N_k(I_i) \\ 0, & I_j \notin N_k(I_i) \end{cases}$$

 $\overline{M} = \{M_{k_1}, M_{k_2} \dots, M_{k_K}\}, k \in \{k_1, k_2, \dots, k_K\}, K \text{ is the number of window masks}$

Re-Scoring

$$\hat{C} = \left(\sum_{M_k \in \overline{M}} (D^{-1}(M_k \odot W)C) + C)/(K+1)\right)$$
$$D(i,i) = \sum_{k=1}^n M_k \odot W(i,k)$$

3. Classification Re-Scoring with Constrained Image-level Neighborhood

$$\hat{c}_{i} = \frac{c_{i}}{3} + \left[\frac{1}{3} \sum_{j=1}^{k_{2}} \overline{w}_{i,j} \overline{c}_{j} \right] \xrightarrow{} \text{Weighted average}$$
$$\overline{w}_{i,j} = \begin{cases} \hat{w}_{i,j}^{k_{1}} + \hat{w}_{i,j}^{k_{2}}, & \text{if } 0 < j \le k_{1} \\ \hat{w}_{i,j}^{k_{2}}, & \text{if } k_{1} < j \le k_{2} \end{cases}$$

Less overlap between the scores of normal images and those of abnormal scores

1. Datasets

MVTec AD

VisA

2. Quantitative results

Companson with zero-shot methods											
Dataset	Method	Setting	AUROC-cls	F1-max-cls	AP-cls	AUROC-segm	1F1-max-segm	AP-segm	PRO-segm		
MVTec Al	WinCLIP	0-shot	<u>91.8</u>	<u>92.9</u>	<u>96.5</u>	85.1	31.7	-	64.6		
	DAPRIL-GAN	0-shot	86.1	90.4	93.5	87.6	43.3	<u>40.8</u>	44.0		
	ACR	0-shot	85.8	91.3	92.9	<u>92.5</u>	<u>44.2</u>	38.9	<u>72.7</u>		
	MuSc (ours)	0-shot	97.8(+6.0)	97.5(+4.6)	99.1(+2.6)	97.3(+4.8)	62.6(+18.4)	62.7(+21.9)	93.8(+21.1)		
VisA	WinCLIP	0-shot	<u>78.1</u>	<u>79.0</u>	81.2	79.6	14.8	-	56.8		
	APRIL-GAN	0-shot	78.0	78.7	<u>81.4</u>	<u>94.2</u>	<u>32.3</u>	<u>25.7</u>	86.8		
	MuSc (ours)	0-shot	92.8(+14.7)	89.5(+10.5)	93.5(+12.1)	98.8(+4.6)	48.8(+16.5)	45.1(+19.4)	92.7(+5.9)		

Comparison with zoro shot mothods

MuSc abtains 21.1% PRO gains and 21.9% seg-AP gains **MVTec AD**

VisA MuSc abtains 19.4% seg-AP gains and 14.7% cls-AUROC gains

2. Quantitative results

Dataset	Method	Setting	AUROC-cls	F1-max-cls	s AP-cls	AUROC-segm	F1-max-segm	n AP-segm	PRO-segm
MVTec AI	RegAD	4-shot	89.1	92.4	94.9	96.2	51.7	48.3	88.0
	PatchCore	4-shot	88.8±2.6	92.6±1.6	94.5±1.5	94.3 ± 0.5	55.0 ± 1.9	-	84.3 ± 1.6
	WinCLIP	4-shot	95.2 ± 1.3	94.7 ± 0.8	97.3 ± 0.6	96.2 ± 0.3	59.5 ± 1.8	-	$89.0{\pm}0.8$
	APRIL-GAN	4-shot	92.8 ± 0.2	92.8±0.1	96.3 ± 0.1	$95.9 {\pm} 0.0$	56.9 ± 0.1	54.5 ± 0.2	91.8 ± 0.1
	GraphCore	4-shot	92.9	-	-	97.4	_	-	-
	MuSc (ours)	0-shot	97.8	97.5	99.1	<u>97.3</u>	62.6	62.7	93.8
VisA	PatchCore	4-shot	85.3±2.1	84.3±1.3	87.5±2.1	96.8±0.3	43.9±3.1	-	84.9±1.4
	WinCLIP	4-shot	87.3±1.8	84.2 ± 1.6	88.8 ± 1.8	97.2 ± 0.2	47.0 ± 3.0	-	$87.6{\pm}0.9$
	APRIL-GAN	4-shot	92.6±0.4	88.4±0.5	94.5±0.3	96.2 ± 0.0	40.0 ± 0.4	32.2±0.1	90.2 ± 0.1
	MuSc (ours)	0-shot	92.8	89.5	<u>93.5</u>	98.8	48.8	45.1	92.7

Comparison with few-shot methods

MuSc outperforms most of the few-shot approaches

REAL REAL PROPERTY OF SCIENCE AND

3. Qualitative result

Detect various types of defects

3. Qualitative result

Detect various types of defects

RsCIN

- Based on ST, e.g. STPM
- Based on memory, e.g. SPADE and PatchCore
- Based on reconstruction, e.g. DRAEM and DSR

Few-shot methods

- Based on ST, e.g. RegAD
- Based on CLIP, e.g. APRIL-GAN

Zero-shot methods APRIL-GAN

Method	RsCIN AUROC	F1-max	AP	Method	RsCIN	AUROC	F1-max	AP
SPADE	w/o 85.4 w 87.0	90.1 91.4	93.6 94.3	PatchCore	w/o w	99.0 99.1	98.4 98.4	99.7 99.7
DRAEM	w/o 98.0 w 97.9	97.0 97.0	99.0 99.1	DSR	w/o w	98.2 98.2	96.6 96.8	99.1 99.3
STPM	w/o 94.9 w 95.6	95.8 96.5	98.2 98.5	RegAD(2-shot)	w/o w	84.8 86.2	90.7 91.6	92.5 93.1
APRIL-GAN(0-shot)	w/o 86.1 w 86.1	90.4 90.8	93.5 93.7	RegAD(4-shot)	w/o w	89.1 91.0	92.4 93.5	94.9 95.8
APRIL-GAN(4-shot)	w/o 92.8 w 93.4	92.8 93.1	96.3 96.8	RegAD(8-shot)	w/o w	91.2 92.1	92.9 94.0	95.7 96.0
APRIL-GAN*(0-shot)	w/o 78.0 w 78.7	78.7 80.1	81.4 82.0	APRIL-GAN*(4-shot)	w/o w	92.6 94.5	88.4 90.5	94.5 95.8

RsCIN can effectively improve the classification results of other existing methods

Thank you !