

UNIVERSITY OF OSLO

Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty

Changbin Li, Kangshuo Li, Yuzhe Ou, Lance M. Kaplan, Audun Jøsang, Jin-Hee Cho, Dong Hyun Jeong, Feng Chen

ICLR 2024

Motivation

Necessity of composite label learning and prediction

A dog image x_1 with Y_1 ={Husky, <u>Malamute</u>, Samoyed} X-ray of someone's brain

- A doctor making a high-stakes medical decision
- True diagnose ∈ {Normal, Concussion, Cancer}
- *Prob*[true diagnose ∈ {Normal, Concussion}] > *Prob*[true diagnose ∈ {Cancer}]

Challenge:

How to quantify predictive uncertainty in the presence of composite set labels in the training set?

Our Approach

Our Approach

Inference process of HENN

Different predictive uncertainties from HENN.

This framework can identify either a singleton class or a composite set with the highest belief, and it can predict the singleton class with the greatest projected class probability.

Introduce Vagueness

$$TotalVagueness = \sum_{y_j \in C(\mathbb{Y})} b_j$$
$$b_j = \frac{\alpha_j}{K + \sum_{l=1}^{\kappa} \alpha_l}$$
$$K : \text{the number of classes}$$

Our Approach

Model Training

Expected cost

. . .

KL regularizer

Jaccard Similarity (JS)

JS $(y, \hat{y}) = rac{|y \cap \hat{y}|}{|y \cup \hat{y}|}$

Backbone EfficientNet-b3

Table 2: Results (%) based on Gaussian kernel size: 3×3 on CIFAR100 and tinyImageNet. (The average of three runs is provided, and the confidence interval is included in the App. due Set prediction

		tinyImageNet			living17			nonliving26		Singleton prediction	
M	Methods	OverJS	CompJS	Acc	OverJS	CompJS	Acc	OverJS	CompJS	Acc	
10	DNN (Tan & Le, 2019)	83.4	66.9	79.8	88.1	81.0	83.3	85.6	62.0	82.9	
	ENN (Sensoy et al., 2018)	75.9	63.5	80.7	88.0	72.3	84.5	85.0	52.9	84.5	
	E-CNN (Tong et al., 2021)	33.4	31.1	68.2	30.5	36.8	65.7	28.3	35.8	60.6	
	RAPS (Angelopoulos et al., 2021)	73.1	43.6	79.8	86.4	61.3	83.3	82.7	46.3	82.9	
	PiCO (Wang et al., 2022b)	57.2	35.6	64.3	62.5	43.7	65.2	61.8	42.6	64.8	
	HENN (ours)	84.4	93.4	82.5	88.8	96.5	85.6	86.9	96.8	85.4	
15	DNN (Tan & Le, 2019)	84.3	67.3	79.5	88.1	84.8	80.2	85.6	68.9	81.5	
	ENN (Sensoy et al., 2018)	83.5	60.7	81.2	88.0	78.3	82.4	85.4	62.6	82.9	
	E-CNN (Tong et al., 2021)	32.5	33.3	68.4	31.6	37.3	65.5	29.8	35.1	60.1	
	RAPS (Angelopoulos et al., 2021)	68.1	45.6	79.5	85.5	66.5	80.2	83.8	56.1	81.5	
	PiCO (Wang et al., 2022b)	56.8	35.3	64.6	61.4	43.1	64.8	61.5	42.5	64.6	
·	HENN (ours)	84.6	90.6	81.6	88.8	96.6	85.7	86.9	96.2	84.1	

Key observations: (similar results observed in other backbones, such as ResNet and VGG-16)

- HENN outperforms other baselines in terms of accuracy for singleton prediction.
- HENN outperforms other baselines in terms of OverJS and CompJS for set prediction.

ROC curves on CIFAR100 and tinyImageNet

- Vagueness (HENN)
- Vacuity (ENN)
- Dissonance (ENN)
- Entropy (DNN)

Key observations: (similar results observed in other datasets, such as living17 and nonliving26)

 Vagueness from HENN is the best indicator to distinguish singleton examples and composite examples compared to other common uncertainties.

Thank you

Poster Session 7 Hall B Fri 10 May, 10:45 a.m. - 12:45 p.m. CEST

