

DIRICHLET-BASED PER-SAMPLE WEIGHTING BY TRANSITION MATRIX FOR NOISY LABEL LEARNING

HeeSun Bae¹, Seungjae Shin¹, Byeonghu Na¹, II-Chul Moon ^{1,2}

[Paper]

[GitHub]

Introduction

- What is "noisy label"?
 - While collecting data, getting high quality annotation can be difficult and expensive => Noisy label •
 - How to train the model robustly to the noisy label matters. •
 - Example. All below images are labeled as "Cat" •

Annotation = cat True label = dog

(Wrong)

Introduction

- What is "noisy label"?
 - While collecting data, getting high quality annotation can be difficult and expensive => Noisy label
 - How to train the model robustly to the noisy label matters.
- Solutions:
 - Sample selection: filter (or remove) noisy sample
 - Label correction: change (or cleanse) noisy label
 - Robust loss modeling: a classifier will converge to the same optimal point with/without noisy label
 - Transition matrix modeling

• •••

Introduction

Solutions:

. . .

- Sample selection: filter (or remove) noisy sample
- Label correction: change (or cleanse) noisy label
- Robust loss modeling: a classifier will converge to the same optimal point with/without noisy label
- Transition matrix modeling
- What is "Transition matrix"?
 - Definition: The flipping probability of a clean label(Y) to noisy label (\tilde{Y})

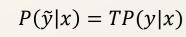
$$p(\tilde{Y}|x) = Tp(Y|x)$$
 with $T_{jk} = p(\tilde{Y} = j|Y = k, x) \forall j, k = 1, ..., C$

- Problem: We don't know what **T** is.
- Previous methods have focused on how to estimate T well.

Transition matrix for learning with noisy label

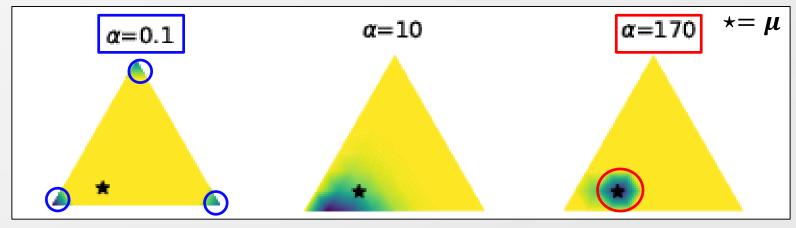
$$p(\tilde{Y}|x) = Tp(Y|x) \text{ if } T_{jk} = p(\tilde{Y} = j|Y = k, x) \forall j, k = 1, \dots, C$$

- How to utilize the transition matrix is also important
 - 1. Forward



- Empirically, the classifier trained with forward loss can be different from true classifier
- 2. Backward $T^{-1}P(\tilde{y}|x) = P(y|x)$ $T^{-1}L(f(x), \tilde{y})$
 - Unstable performance
- 3. Reweighting $P(\tilde{y}|x) = TP(y|x)$ $\left(\frac{P(y|x)}{TP(y|x)}\right) \cdot L(f(x), \tilde{y})$
 - The true weight $\left(\frac{P(\boldsymbol{y}|\boldsymbol{x})}{TP(\boldsymbol{y}|\boldsymbol{x})}\right)$ is still inaccessible
- *L*: Cross entropy
- f: Model (Classifier), \widetilde{y} : (Sampled) noisy label. Noisy label data

- Dirichlet-based Weight Sampling
 - Properties of Dirichlet distribution
 - When $\alpha \rightarrow 0$, the sampled vector is skewed to one specific dimension. E.g. [1,0,0]
 - When $\alpha \to \infty$, vectors are sampled in the near region to the mean vector. E.g. [0.7,0.2,0.1]



[Density plot of $Dir(\alpha \mu)$ with different α . $\mu = [0.7, 0.2, 0.1]$]

- Dirichlet-based Weight Sampling
 - Properties of Dirichlet distribution
 - When $\alpha \rightarrow 0$, the sampled vector is skewed to one specific dimension. E.g. [1,0,0]
 - When $\alpha \to \infty$, vectors are sampled in the near region to the mean vector. E.g. [0.7,0.2,0.1]
- Suggest a loss function that can integrate both reweighting and resampling
 - Reweighting loss function $\left(R_{l,RW}^{emp}\right) \coloneqq \frac{1}{N} \sum_{i=1}^{N} \frac{f_{\theta}(x_i)_{\widetilde{y}_i}}{(Tf_{\theta}(x_i))_{\widetilde{y}_i}} l(f_{\theta}(x_i), \widetilde{y}_i)$
 - Resampling loss function $\left(R_{l,RENT}^{emp}\right) \coloneqq \frac{1}{M} \sum_{i=1}^{M} l(f_{\theta}(x_i), \widetilde{y}_i)$
 - Note the number of samples changed (sampling)
 - will be explained later in more details
 - Both reweighting and resampling can be expressed by modifying α value.

$$R_{l,DWS}^{emp} \coloneqq \frac{1}{M} \sum_{j=1}^{M} \sum_{i=1}^{N} w_i^j l(f_{\theta}(x_i), \widetilde{y}_i), \quad with \, \boldsymbol{w^j} \sim Dir(\alpha \boldsymbol{\mu})$$

f: Model (Classifier) *y*: clean label *ỹ*: noisy label

APPLIED ARTIFICIAL INTELLIGENCE LAB

- Support explanations on why resampling is better than reweighting
 - Variance Analysis: Smaller α means variance increase with regard to the risk function
 - Variance increase can improve robustness for learning with noisy label

$$V\left(R_{l,DWS}^{emp}\right) = \frac{1}{M^2} \sum_{j=1}^{M} \left(\sum_{i=1}^{N} l\left(f_{\theta}(x_i), \tilde{y}_i\right)^2 V\left(w_i^j\right) + \sum_{k \neq i} Cov\left(w_i^j, w_k^j\right)\right), V\left(w_i^j\right) = \frac{\mu_i(1-\mu_i)}{\alpha+1} \text{ and } Cov\left(w_i^j, w_k^j\right) = -\frac{\mu_i \mu_k}{\alpha+1}$$

- Variance and Covariance are defined as such by the definition of the Dirichlet distribution.
- Since μ is a scalar value, it does not affect the variance.

- Support explanations on why resampling is better than reweighting
 - Distance from the true weight
 - Let $\tilde{\mu_i}^* = \frac{p(Y=\tilde{y}_i|x_i)}{p(\tilde{Y}=\tilde{y}_i|x_i)}$ (true weight) and $\mu^* =$ normalized vector of $\tilde{\mu_i}^*$
 - While training, we cannot know $\mu^* =>$ It should be approximated from the output of the training classifier
 - μ^* approximation error => the risk function statistical consistency is not approved
 - Smaller $\alpha =>$ smaller mahalanobis distance between μ^* and $\frac{1}{M} \sum_{j=1}^{M} w^j$

$$d_{M}\left(\mu^{*},\frac{1}{M}\sum_{j=1}^{M}w^{j}\right) = \sqrt{(\mu^{*}-\mu)^{T}\left(\frac{\Sigma}{M}\right)^{-1}(\mu^{*}-\mu)} = \sqrt{M(\alpha+1)(\mu^{*}-\mu)^{T}S^{-1}(\mu^{*}-\mu)}$$

• $S = (\alpha + 1)\Sigma$

- Support explanations on why resampling is better than reweighting
 - Noise injection impact
 - Injecting random noise to label increases robustness against label noise
 - $R_{l,DWS}^{emp}$ can be interpreted as injecting noise (following normal distribution) to label during training
 - With smaller *α*, the noise injection amount increases

$$\lim_{N \to \infty} R_{l,DWS}^{emp} = \sum_{i=1}^{N} \mu_i l(f_{\theta}(x_i), \widetilde{y}_i) + \sum_{i=1}^{N} z_i l(f_{\theta}(x_i), \widetilde{y}_i), z_i \sim \mathcal{N}(0, \frac{\mu_i (1 - \mu_i)}{M(\alpha + 1)})$$

RENT: RESAMPLE FROM NOISE TRANSITION => Importance Sampling based Resampling technique

Algorithm 1: <u>RE</u>sampling utilizing the <u>N</u>oise <u>T</u>ransition matrix (RENT) Input: Dataset $\tilde{D} = \{x_i, \tilde{y}_i\}_{i=1}^N$, classifier f_{θ} , Transition matrix T, Resampling budget MOutput: Updated f_{θ} while f_{θ} not converge do Get $\tilde{\mu}_i = f_{\theta}(x_i)_{\tilde{y}_i}/(Tf_{\theta}(x_i))_{\tilde{y}_i}$ for all iConstruct Categorical distribution $\pi_N = \operatorname{Cat}(\frac{\tilde{\mu}_1}{\sum_{l=1}^N \tilde{\mu}_l}, \dots, \frac{\tilde{\mu}_N}{\sum_{l=1}^N \tilde{\mu}_l})$ Independently sample $(x_1, \tilde{y}_1), \dots, (x_M, \tilde{y}_M)$ from π_N Update f_{θ} by $\theta \leftarrow \theta - \nabla_{\theta} \frac{1}{M} \sum_{j=1}^M l(f_{\theta}(x_j), \tilde{y}_j)$ end

- Per-sample weight $\left(=\frac{P(y|x)}{TP(y|x)}\right)$ calculation
 - The true weight is inaccessible
 - $P(y_i|x_i)$ is approximated as $f_{\theta}(x_i)_{\tilde{y}_i}$

• =>
$$\tilde{\mu}_i = f_{\theta}(x_i)_{\tilde{y}_i} / (Tf_{\theta}(x_i))_{\tilde{y}_i}$$

KAIST

RENT: RESAMPLE FROM NOISE TRANSITION => Importance Sampling based Resampling technique

Algorithm 1: <u>RE</u>sampling utilizing the <u>N</u>oise <u>T</u>ransition matrix (RENT) Input: Dataset $\tilde{D} = \{x_i, \tilde{y}_i\}_{i=1}^N$, classifier f_{θ} , Transition matrix T, Resampling budget MOutput: Updated f_{θ} while f_{θ} not converge do Get $\tilde{\mu}_i = f_{\theta}(x_i)_{\tilde{y}_i} / (Tf_{\theta}(x_i))_{\tilde{y}_i}$ for all iConstruct Categorical distribution $\pi_N = \operatorname{Cat}(\frac{\tilde{\mu}_1}{\sum_{l=1}^N \tilde{\mu}_l}, \dots, \frac{\tilde{\mu}_N}{\sum_{l=1}^N \tilde{\mu}_l})$ Independently sample $(x_1, \tilde{y}_1), \dots, (x_M, \tilde{y}_M)$ from π_N Update f_{θ} by $\theta \leftarrow \theta - \nabla_{\theta} \frac{1}{M} \sum_{j=1}^M l(f_{\theta}(x_j), \tilde{y}_j)$ end

- Categorical distribution (π_N) construction
 - Where the parameter of π_n is from?

KAIST

$$R_{l}(f_{\theta}) = \mathbb{E}_{(x,y) \sim p(X,Y)}[l(f_{\theta}(x),y)] = \mathbb{E}_{(x,y) \sim p(X,\tilde{Y})}\left[l(f_{\theta}(x),y)\frac{p(x,Y=\tilde{y})}{p(x,\tilde{Y}=\tilde{y})}\right]$$

 $= \mathbb{E}_{(x,y)\sim p(X,\tilde{Y})} \left| l(f_{\theta}(x), y) \frac{p(Y=\tilde{y}|x)p(x)}{p(\tilde{Y}=\tilde{y}|x)p(x)} \right| = \mathbb{E}_{(x,y)\sim p(X,\tilde{Y})} \left[l(f_{\theta}(x), y) \frac{p(Y=\tilde{y}|x)}{p(\tilde{Y}=\tilde{y}|x)} \right]$

 $= \mathbb{E}_{(x,y) \sim p(X,\tilde{Y})} \left[\frac{p(Y = \tilde{y} | x)}{p(\tilde{Y} = \tilde{y} | x)} l(f_{\theta}(x), y) \right]$ Per sample weight

Importance sampling

p(x) is same according to the problem setting

RENT: RESAMPLE FROM NOISE TRANSITION => Importance Sampling based Resampling technique

Algorithm 1: <u>RE</u>sampling utilizing the <u>N</u>oise <u>T</u>ransition matrix (RENT) Input: Dataset $\tilde{D} = \{x_i, \tilde{y}_i\}_{i=1}^N$, classifier f_{θ} , Transition matrix T, Resampling budget MOutput: Updated f_{θ} while f_{θ} not converge do Get $\tilde{\mu}_i = f_{\theta}(x_i)_{\tilde{y}_i} / (Tf_{\theta}(x_i))_{\tilde{y}_i}$ for all iConstruct Categorical distribution $\pi_N = \operatorname{Cat}(\frac{\tilde{\mu}_1}{\sum_{l=1}^N \tilde{\mu}_l}, \dots, \frac{\tilde{\mu}_N}{\sum_{l=1}^N \tilde{\mu}_l})$ Independently sample $(x_1, \tilde{y}_1), \dots, (x_M, \tilde{y}_M)$ from π_N Update f_{θ} by $\theta \leftarrow \theta - \nabla_{\theta} \frac{1}{M} \sum_{j=1}^M l(f_{\theta}(x_j), \tilde{y}_j)$ end

- Resampling: From π_N , independently resample dataset
 - If $\tilde{\mu}_i = \tilde{\mu}_i^*$, $R_{l,RENT}^{emp}$ is statistically consistent to R_l

Experiment

- Classification performance
 - Training dataset include noisy label // Test on clean label dataset
 - SN/ASN = arbitrary noisy label included (%=noisy label ratio)
 - Base = How the transition matrix is estimated (CE is cross entropy. Not treating the noisy label)
 - w/XXX = How to utilize the transition matrix

		CIFAR10				CIFAR100			
Base	Risk	SN 20%	SN 50%	ASN 20%	ASN 40%	SN 20%	SN 50%	ASN 20%	ASN 40%
CE	×	73.4 ± 0.4	46.6 ±0.7	78.4 ± 0.2	69.7 ± 1.3	$33.7{\pm}1.2$	18.5 ± 0.7	36.9±1.1	27.3 ± 0.4
Forward	w/ FL	73.8 ± 0.3	58.8 ± 0.3	79.2 ± 0.6	74.2 ± 0.5	30.7 ± 2.8	15.5 ± 0.4	34.2±1.2	25.8±1.4
	w/ RENT	78.7±0.3	69.0 ±0.1	82.0±0.5	77.8±0.5	38.9±1.2	28.9±1.1	38.4±0.7	30.4 ± 0.3
DualT	w/ FL w/ PW	79.9 ± 0.5	71.8 ± 0.3	82.9 ± 0.2	77.7 ± 0.6	35.2 ± 0.4	23.4±1.0	38.3 ± 0.4	28.4 ± 2.6
	w/ RENT	82.0 ± 0.2	74.6 ± 0.4	83.3±0.1	80.0±0.9	39.8 ±0.9	27.1±1.9	39.8 ±0.7	34.0 ± 0.4
TV	w/ FL w/ RW	74.0 ± 0.5 73.7 ± 0.9	50.4 ± 0.6 48 5 ± 4 1	78.1 ± 1.3 77.3 ± 2.0	71.6 ± 0.3 70.2 \pm 1.0	34.5 ± 1.4 32 3 ± 1.0	21.0 ± 1.4 17.8 ± 2.0	33.9 ± 3.6 32.0 ± 1.5	28.7 ± 0.8 23.2 ± 0.9
	w/ RENT	$78.8{\scriptstyle \pm 0.8}$	62.5 ± 1.8	81.0 ± 0.4	74.0 ± 0.5	34.0 ± 0.9	20.0 ± 0.6	34.0 ± 0.2	25.5 ± 0.4
VolMinNet	w/ FL w/ RW	74.1±0.2 74.2±0.5	46.1±2.7 50.6±6.4	78.8 ± 0.5 78.6 ± 0.5	69.5 ± 0.3 70.4 ± 0.8	29.1±1.5 36.9±1.2	25.4 ± 0.8 24.4 ± 3.0	22.6 ± 1.3 34.9 ± 1.3	14.0 ± 0.9 26.5 ± 0.9
	w/ RENT	79.4 ± 0.3	62.6±1.3	80.8±0.5	74.0 ± 0.4	35.8 ± 0.9	29.3 ± 0.5	36.1 ± 0.7	31.0 ± 0.8
Cycle	w/ FL w/ RW	81.6±0.5 80.2±0.2	- 57 0+34	82.8 ± 0.4 78.1 ± 0.9	54.3±0.3	39.9±2.8 37.8±27	- 30.2±06	39.4 ± 0.2 38.1 ± 1.6	31.3 ± 1.2 29.3 ± 0.6
	w/ RENT	82.5 ± 0.2	70.4 ± 0.3	81.5 ± 0.1	70.2 ± 0.7	$40.7{\scriptstyle\pm0.4}$	32.4 ± 0.4	40.7 ± 0.7	32.2 ± 0.6
True T	w/ FL w/ RW	76.7 ± 0.2 76.2 ± 0.3	57.4±1.3	75.0±11.9	70.7±8.6	34.3 ± 0.5 35.0 ± 0.8	22.0 ± 1.5 21.8 ± 0.8	35.8 ± 0.5	$31.9_{\pm 1.0}$
	w/ RENT	79.8 ± 0.2	66.8 ± 0.6	82.4 ± 0.4	78.4±0.3	36.1 ±1.1	24.0 ± 0.3	34.4±0.9	27.2 ± 0.6

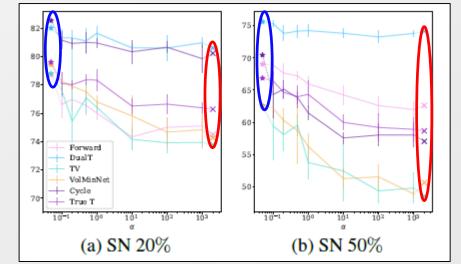
			Clothing1M				
Base	Risk	Aggre	Ran1	Ran2	Ran3	Worse	-
CE	×	80.8 ± 0.4	75.6±0.3	75.3±0.4	75.6 ± 0.6	60.4 ± 0.4	66.9±0.8
Forward	w/ FL w/ RW w/ RENT	$\begin{array}{c} 79.6{\scriptstyle\pm1.8}\\ 80.7{\scriptstyle\pm0.5}\\ \textbf{80.8}{\scriptstyle\pm0.8}\end{array}$	$76.1{\scriptstyle\pm 0.8} \\ 75.8{\scriptstyle\pm 0.3} \\ 77.7{\scriptstyle\pm 0.4}$	$76.4{\scriptstyle\pm0.4}\\76.0{\scriptstyle\pm0.5}\\77.5{\scriptstyle\pm0.4}$	$\begin{array}{c} 76.0{\scriptstyle\pm0.2} \\ 75.8{\scriptstyle\pm0.6} \\ 77.2{\scriptstyle\pm0.6} \end{array}$	$\begin{array}{c} 64.5{\scriptstyle\pm1.0}\\ 63.9{\scriptstyle\pm0.7}\\ \textbf{68.0}{\scriptstyle\pm0.9}\end{array}$	$\begin{array}{c} 67.1{\scriptstyle\pm0.1}\\ 66.8{\scriptstyle\pm1.1}\\ 68.2{\scriptstyle\pm0.6}\end{array}$
DualT	w/ FL w/ RW w/ RENT	$81.9{\pm}0.2$ $81.8{\pm}0.4$ $82.0{\pm}1.2$	$79.4{\scriptstyle\pm0.4}\\79.8{\scriptstyle\pm0.2}\\\textbf{80.5}{\scriptstyle\pm0.5}$	$79.3{\scriptstyle\pm1.0}\atop79.4{\scriptstyle\pm0.6}\\\textbf{80.4}{\scriptstyle\pm0.7}$	$79.4{\scriptstyle\pm0.4}\\79.6{\scriptstyle\pm0.4}\\\textbf{80.5}{\scriptstyle\pm0.6}$	$72.1{\scriptstyle\pm 0.9}\\71.4{\scriptstyle\pm 1.0}\\73.5{\scriptstyle\pm 0.7}$	$\begin{array}{c} 68.2{\pm}1.0\\ 68.5{\pm}0.4\\ \textbf{69.9}{\pm}0.7\end{array}$
TV	w/ FL w/ RW w/ RENT	$\begin{array}{c} 80.5{\scriptstyle\pm0.7}\\ 80.7{\scriptstyle\pm0.4}\\ \textbf{81.0}{\scriptstyle\pm0.4}\end{array}$	$76.4{\pm}0.4$ $75.8{\pm}0.6$ $77.4{\pm}0.6$	$76.2{\scriptstyle\pm0.5} \\ 75.2{\scriptstyle\pm1.1} \\ 77.8{\scriptstyle\pm1.0}$	$76.1{\scriptstyle\pm 0.1} \\ 75.4{\scriptstyle\pm 1.5} \\ 76.7{\scriptstyle\pm 0.4}$	60.2 ± 5.2 62.3 ± 2.9 66.9 ± 3.1	$\begin{array}{c} 66.7{\scriptstyle\pm0.3}\\ 67.4{\scriptstyle\pm0.5}\\ \textbf{68.1}{\scriptstyle\pm0.4}\end{array}$
VolMinNet	w/ FL w/ RW w/ RENT	$\begin{array}{c} 80.9{\pm}0.3\\ 80.7{\pm}0.6\\ \textbf{81.3}{\pm}0.4\end{array}$	76.3±0.5 76.2+0.5 77.6 ±1.0	$75.9{\pm}0.7$ $75.5{+}0.8$ $77.7{\pm}0.3$	75.9±0.6 75.5+0.2 77.2 ±0.7	61.8±1.3 63.0+3.2 66.9±0.5	$\begin{array}{r} 65.0{\scriptstyle\pm0.1}\\ 66.6{\scriptstyle\pm0.1}\\ 67.7{\scriptstyle\pm0.3}\end{array}$

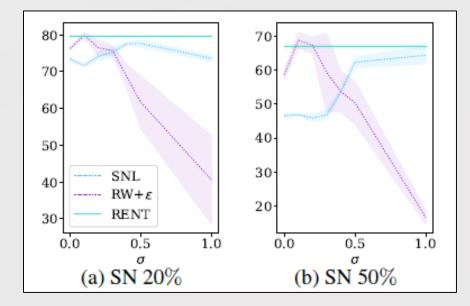
- How to utilize the transition matrix is also important for the model performance, and RENT shows the best
- RENT improves various baselines consistently

Experiment

- (DWS) α impact
 - ★(RENT) vs. ×(ReWeighting)
 - Lines are test accuracies with diverse α values.
 - Colors represent baselines to estimate the transition matrix.
 - ★ shows the best performance

- Noise injection impact of RENT
 - Risk functions
 - SNL = $\sum_{i=1}^{N} l(f_{\theta}(x_i), \widetilde{y}_i) + \sigma \sum_{i=1}^{N} \sum_{k=1}^{C} z_{ik} l(f_{\theta}(x_i), k), z_{ik} \sim \mathcal{N}(0, 1)$
 - $\mathsf{RW} + \epsilon = \sum_{i=1}^{N} \mu_i l(f_{\theta}(x_i), \widetilde{y}_i) + \sigma \sum_{i=1}^{N} \sum_{k=1}^{C} \frac{z_{ik}}{z_{ik}} l(f_{\theta}(x_i), k), z_{ik} \sim \mathcal{N}(0, 1)$
 - RENT = $\sum_{i=1}^{N} \mu_i l(f_{\theta}(x_i), \widetilde{y}_i) + \sum_{i=1}^{N} z_i l(f_{\theta}(x_i), \widetilde{y}_i), z_i \sim \mathcal{N}(0, \frac{\mu_i(1-\mu_i)}{M})$
 - RENT consistently shows better or comparable performance over SNL or RW+ ϵ with regard to hyperparameter(σ)





Conclusion

- We first decompose the training procedure for noisy label classification with the label transition m atrix T as estimation and utilization, underscoring the importance of adequate utilization.
- We present an alternative utilization of the label transition matrix T by resampling, RENT.
 - RENT ensures the statistical consistency of risk function to the true risk for data resampling by utilizing T.
 - Yet it supports more robustness to noisy label (empirically shows good performance).
- We interpret resampling and reweighting in one framework through Dirichlet distribution-based pe r-sample Weight Sampling (DWS).
 - Integrating resampling and reweighting
 - analyzing the success of resampling over reweighting in learning with noisy label.
- Diverse experiments show consistent improvements over the existing T utilization methods.