

Course Correcting Koopman Representations

Mahan Fathi **Clement Gehring** Jonathan Pilault

David Kanaa

Pierre-Luc Bacon

Ross Goroshin

ODEL	KOOPMAN (LINEAR	LATENT DYNAMICS)	NONLINEAR LA	MLP							
ecoder Type riodic Reenc. (✗, ✔)	LINEAR	NonLinear ✗ │ ✓	LINEAR X /	NonLinear ✗ │ ✓	-						
VIRONMENT	MSE over 100 steps										
rabolic Attractor ndulum Iffing Oscillator tka-Volterra renz'63	0.0205 0.0292 0.0512 0.0042 0.1152 0.0112 0.0113 0.0072 X 11.162	0.14650.07580.06480.01810.15120.05120.01450.0098X12.569	0.07390.04960.0288 0.0025 0.0450 0.0022 0.0128 0.0040 18.985 7.265	0.07270.05470.02420.00340.04500.01120.01120.006019.051 7.110	$\begin{array}{c} 0.2674 \\ 0.7442 \\ 0.4050 \\ 1.4450 \\ 88.565 \end{array}$						
VIRONMENT	MSE over 1000 steps										
ndulum Iffing Oscillator tka-Volterra renz'63	$ \begin{vmatrix} 9.2021 \\ 20.5440 \\ 1.6292 \\ \hline \mathbf{X} \end{vmatrix} \begin{vmatrix} 0.1818 \\ 1.0658 \\ 0.3961 \\ \overline{\mathbf{X}} \end{vmatrix} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.71840.08415.78510.57250.72610.2888X59.262	10.5832 0.2964 9.2451 0.93845 0.7281 0.4324 X 54.793	55.281 22.445 83.205 133.509						

DEL			Koopman A	U	TOENCODER	1	MLP	Ш	BC
ATE FEEDBAC	K (X , ✔)	I	×		×	I	×		✓
RIODIC REENO	CODING (X, 🗸)	l	×		✓	I	-		-
vironment	Dataset		total reward until termination						
pper-v2 lfCheetah-v2 lker2d-v2	expert expert expert		18.40 ± 6.2 15.06 ± 5.3 18.46 ± 8.1		$\begin{array}{c} {\bf 53.5 \pm 14.5} \\ {\bf 64.2 \pm 12.9} \\ {\bf 61.9 \pm 14.2} \end{array}$		18.9 ± 5.9 19.5 ± 7.9 11.4 ± 2.5		$96.05 \pm 4.3 \\ 82.91 \pm 5.9 \\ 98.73 \pm 1.5$